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Abstract

We present a sensitivity analysis for a mechanical model, which is used to esti-
mate the energy demand of battery electric vehicles. This model is frequently
used in literature, but its parameters are often chosen incautiously, which can
lead to inaccurate energy demand estimates. We provide a novel prioritization
of parameters and quantify their impact on the accuracy of the energy demand
estimation, to enable better decision making during the model parameter se-
lection phase. We furthermore determine a subset of parameters, which has to
be defined, in order to achieve a desired estimation accuracy. The analysis is
based on recorded GPS tracks of a battery electric vehicle under various driv-
ing conditions, but results are equally applicable for other BEVs. Results show
that the uncertainty of vehicle efficiency and rolling friction coefficient have the
highest impact on accuracy. The uncertainty of power demand for heating and
cooling the vehicle also strongly affects the estimation accuracy, but only at low
speeds. We also analyze the energy shares related to each model component in-
cluding acceleration, air drag, rolling and grade resistance and auxiliary energy
demand. Our work shows that, while some components make up a large share
of the overall energy demand, the uncertainty of parameters related to these
components does not affect the accuracy of energy demand estimation signifi-
cantly. This work thus provides guidance for implementing and calibrating an
energy demand estimation based on a longitudinal dynamics model.
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1. Introduction

Battery electric vehicles (BEVs) have the potential to significantly reduce
oil dependency, decrease carbon emissions and noise, avoid tail pipe emissions
and increase energy efficiency of transportation. Several car manufacturers have
released new types of BEVs and in many European countries the charging in-
frastructure for BEVs is constantly expanded. Additionally, funding programs
and research activities have been started, aiming at improving different aspects
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of electric mobility. Experts are confident that in the near future BEVs will
achieve a significant market penetration (Situ, 2009).

Regarding energy efficiency of driving (tank to wheel efficiency), a BEV
performs much better than an internal combustion engine vehicle (ICEV). It is
worth noting that this does not include the energy efficiency of fuel production
or electricity generation, which varies significantly depending on the mix of
energy sources that are available in a certain region or country. Given a high
efficiency of energy production, the overall efficiency (well to wheel) of BEVs
can be up to twice the overall efficiency of ICEV (Kromer and Heywood, 2007).

A reason for the better tank to wheel efficiency of a BEV is the higher ef-
ficiency of the electric motor (up to 95% (EVO Electric, 2014)) compared to a
combustion engine (up to 35% for gasoline fuels (Treiber and Kesting, 2010)).
Electric motors are able to provide a high torque for a broad range of rotational
speeds. Therefore only a single gear transmission is needed, which further in-
creases the efficiency of the drive train. In general, a BEV contains fewer moving
and rotating parts than an ICEV, resulting in lower maintenance costs (Kamp-
ker et al., 2013; Pelletier et al., 2014). Energy efficiency is further increased by
the ability of the electric motor to act as a generator. During decelerating and
driving downhill, energy can be transformed into electric energy and transferred
back to the battery, instead of being dissipated by friction brakes.

Although energy efficiency of BEVs is high, their driving range without
charging is much shorter than typical ICEV driving ranges. Currently available
BEVs reach driving distances of approximately 150km with a fully charged
battery. Among BEVs, the largest driving range of approximately 420km is
possible with the Tesla Model S, equipped with a 85kWh battery. In contrast,
an average ICEV can easily cover a distance of 800km and more with one tank of
gasoline. The situation is aggravated by very hot or cold ambient temperatures,
which increase the energy demand for cooling or heating.

The reason for short driving ranges is the relatively small amount of energy
that can be stored in the battery. A battery has a much lower specific energy (en-
ergy capacity per unit mass) than a fossil fuel. Nowadays, lithium-ion batteries,
as used in the automotive industry, achieve a specific energy of up to 130Wh/kg,
but specific energy of gasoline is approximately ten times higher (1233Wh/kg,
(Young et al., 2013)). Other battery types currently used in BEVs (Ni-MH,
Zebra) do not achieve higher specific energy values than lithium-ion batteries.
Moreover the price (in costs per capacity) of a standard lithium-ion battery is
about 250USD/kWh (Young et al., 2013; Pelletier et al., 2014). Building larger
batteries for larger driving distances would therefore increase price and weight
of the vehicle. Additional weight also means increased energy consumption and
reduced efficiency. Therefore, it is a challenge for car manufactures to find a
good trade-off between driving range, price and weight.

Because of the small energy storage capability of batteries, it is necessary
to know, how much energy is consumed by the BEV, in order to estimate the
maximum driving range. In the literature, a model, which describes the ve-
hicle behaviour based on the general principles of mechanics, is often used to
estimate the (electric) energy demand. We refer to this model as longitudi-
nal dynamics model (LDM), because it describes the movement behaviour of a
vehicle along its longitudinal direction. An LDM contains several parameters
related to properties of the vehicle and its environment. The literature provides
various references for setting parameters to specific values. Due to varying in-



dications in the literature and different properties of environment and vehicles,
all model parameters are subject to uncertainty within a certain range, which
causes a variation in energy consumption estimation. The question is, which of
the model parameter uncertainties have a higher influence on the accuracy of
the energy consumption estimation and therefore have to be configured more
thoroughly. The answer to this question is also relevant for finding measures to
reduce the energy consumption. This paper aims at analyzing the sensitivity
of the LDM and thus the BEV’s energy consumption. Moreover, the composi-
tion of the total energy estimate, based on the individual LDM components, is
investigated.

The key contribution of this paper is to assess the variance of energy con-
sumption estimation due to the uncertainty of parameters of the LDM. A sen-
sitivity analysis is carried out, in order to investigate the influence of individual
parameters. The analysis is based on recorded GPS tracks of a BEV. The un-
certainty of parameters is specifically determined for a Mitsubishi i-MiEV but
is equally applicable for other BEVs.

Our analysis results provide a basis for LDM users to focus on important
parameters, which need to be determined exactly, while assuming standard val-
ues for less important ones. Thus, the calibration of an LDM can be improved
in terms of accuracy and performance, by using only the most important pa-
rameters, thus reducing parameter search space.

The remainder of the paper is organized as follows: In Section 2 we give a
detailed description of the LDM and summarize different applications for the
LDM found in literature. We describe the theory and application of sensitivity
analysis in Section 3 and discuss the data base used for conducting the sensitivity
analysis in Section 4. In Section 5 we perform a preliminary analysis regarding
the energy shares related to each component of the LDM. Results are presented
in Section 6. Conclusions are drawn in Section 7 including recommendations
for users of the LDM and future research activities.

2. Longitudinal Dynamics Model

The movement behaviour of a vehicle along its moving direction is completely
determined by all forces acting on it in this direction (Ehsani et al., 2009).
Figure 1 shows the forces for a vehicle moving uphill. Air drag, rolling and
grade resistance are the external forces. Tractive effort to overcome these forces
and to accelerate has to be provided by the internal (electric) engine.

2.1. Definition

Firstly we give a description of the relation between external forces, acceler-
ation and basic energy consumption. During a vehicle’s movement, the external
resistances are trying to stop it. According to Newton’s second law, the rela-
tionship between forces and acceleration can be written as

_dv
=
where Fr is the traction force, provided by the electric motor and Fgr are
the aforementioned resistances acting on the vehicle. The total vehicle mass is
m and f is the mass factor of all rotating parts. In order to overcome resistance

Fr f-m+ Fg, (1)



Figure 1: Forces acting on a vehicle moving uphill.

forces and to accelerate with ‘é—;’, the motor has to provide traction force. The

composition of resistances is described as

A
FR:m~g-sin(a)+m-g-cos(a)-CTT—l—%-v2, (2)
Grade Rolling Air

where g is the gravitational acceleration, o the road gradient and c,, the
rolling friction coefficient. Air drag is influenced by velocity v, air density p,
vehicle front surface area A and air drag coefficient cw. All parameters of the
model are described in detail in Section 3.2.

The power required for driving is the traction force times the velocity of the
vehicle. This mechanical power is provided by the electric motor, which draws
electric energy from the battery. Considering efficiency rates, the electric power
drawn from the battery is

FT Y%
v

Pel,out = + PO; (3)

where 75 is the energy efficiency of transmission, motor and power con-
version. Auxiliary components of the car are causing an additional demand of
electric power, denoted as Py. This value depends mainly on the usage of heat-
ing or air condition and already contains an efficiency rate. During deceleration
or driving downhill, traction force Fr may be negative and energy is transmit-
ted back to the battery. In this case, the motor is acting as a generator. This
situation is called recuperation and can be described by

if v < ;
Pel,in _ 0 if v < Viin ) (4)
Fr-v-ng+ Py else

with ng as the efficiency of transmission, generator and in-vehicle charger.
Energy cannot be recuperated below Vi,;,. Again, Py is the power demand of
auxiliary components required for operating the vehicle. If the braking strength
is less than 0.2 times the gravity acceleration (0.2g), all the braking force is
allocated to the wheels connected to the electric motor (Ehsani et al., 2009).
Beyond this limit (e.g., for hard brakes), braking strength is distributed to all
wheels in order to maintain driving stability. In this case, energy is dissipated
by friction brakes and Eq. (4) would overestimate the recuperated energy. In
the FTP75 Urban driving cycle, for example, all decelerations fall below 0.2¢



(Ehsani et al., 2009) and similarly, in the vehicle data used in this study (cf.
Section 4) 98% of the decelerations are below this limit. Therefore, we argue
that applying Eq. (4) is appropriate to estimate recuperated energy for a whole
trip.

To estimate the total energy demand of a trip, all electrical in- and outflows
have to be summarized by

T
Eel == / Pel dta (5)
0

where 7' is the time duration of the trip and P, can be either P ¢ for
driving or P, for recuperating and is defined as
Pgow ifFr>0
Py=q ot T (6)
Pel,in if Fr <0

2.2. Application

The model described in the previous section can be used for estimating in-
stantaneous electric power (Eq. (3) and (4)) and energy consumption for a whole
trip (Eq. (5)). Input data are vehicle trajectories, typically gathered by a GPS
data recorder. Alternatively, a trajectory could be estimated for a predefined
route, based on velocities, which can be derived from travel information services.

Trajectories must contain distance, speed and acceleration between consec-
utive locations, either measured directly or derived from other variables (e.g.
acceleration from speed). To estimate the energy consumption of a trajectory,
the integral of Eq. (5) is replaced by the sum over all elements of the trajectory.
Thus Eq. (5) is rewritten as

N
Eel = Z Pel,i . At, (7)
=1

where At is the time span between two locations of the trajectory and N
is its length. P ; is the electric power estimated at each time step ¢ according
to Eq. (6). In order to compare different trips with varying mileage, we divide
energy consumption by trip length and therefore we obtain energy per distance
unit (kWh/100km). The energy consumption per distance is calculated by

Eel
L b
where L is the length of the whole trajectory.

EC = 8)

2.3. LDM in the Literature

In this section we provide an overview of the state of the art regarding
energy demand estimation. Moreover we identify LDM applications and how
the parameters of the respective model are chosen. From the literature, we can
identify the following groups of LDM applications, which are discussed in more
detail subsequently:

e Estimating energy consumption from either real world or simulated trajec-
tory data (Wu et al., 2015; Hayes et al., 2011; Maia et al., 2011; Boubaker
et al., 2013)



e Determining the influence of driving behaviour on energy demand (Frank
et al., 2013; Araujo et al., 2012; Younes et al., 2013)

e Energy efficient routing and fleet optimization (Sachenbacher et al., 2011;
Artmeier et al., 2010; Prandtstetter et al., 2013; Hiermann et al., 2015;
Pelletier et al., 2014; Goeke and Schueider, 2015; Preis et al., 2014)

e Predicting expected energy demand and range estimation (Sehab et al.,
2011; Vaz et al., 2015; Zhang et al., 2012; Ferreira et al., 2013)

Factors influencing energy demand of electric vehicles are investigated by
Younes et al. (2013). They observe that driving style, different road types and
ambient temperature have the highest effect on energy consumption. The im-
pact of driving style on energy consumption is widely discussed, for example
in Frank et al. (2013); Araujo et al. (2012). For individual trips, different in-
dicators (e.g. arithmetic average) for speed, acceleration and jerk are used to
describe driving style. Although in our study we also investigate impacts on
energy consumption, driving behaviour is not considered in detail. The reasons
behind this decision are described in the conclusion where we argue why the ob-
tained results are not affected by the driving behaviour. Instead our approach
is to examine the impact of vehicle parameters rather than driver influence.
Driving behaviour is considered so far as the sensitivity analysis is performed
with regards to different speeds.

Accuracy of the LDM is the topic of a study by Wu et al. (2015), where
energy consumption is measured by a test vehicle and compared to an estimated
energy consumption obtained from the LDM. Regarding motor efficiency they
consider a more detailed description, based on current and motor resistance.
The choice of parameter values is based on related literature, with no reference
mentioned. Particularly the choice for the rolling friction coefficient, which is
only 0.006, is remarkable, since higher values for the rolling friction coefficient
are recommended (between 0.007 and 0.014) by the National Research Council
(2006). The energy consumption is estimated for two specific electric vehicles
(Nissan Leaf and Tesla Roadster) by applying an LDM by Hayes et al. (2011).
The model is used for range estimation for a given driving cycle and results
are compared to manufacturer specifications. For the Tesla Roadster, a rolling
friction coefficient of only 0.0055 is assumed.

The open source microscopic traffic simulator SUMO is extended by Maia
et al. (2011) to estimate the energy consumption of simulated BEVs. The
LDM uses trajectories generated by the traffic simulation. All parameters of
the LDM are chosen based on the EV1 electric vehicle produced by General
Motors. Again a remarkably low rolling friction coefficient of 0.005 is chosen.
Moreover, values for motor efficiencies are taken from a study analyzing hybrid
electric vehicles. An LDM is applied to trajectories of a microscopic traffic
simulation by Boubaker et al. (2013) to estimate the impact of hybrid electric
vehicles on the energy consumption of all vehicles in the road network.

Sehab et al. (2011) apply an LDM to driving cycles (called mission profiles)
to estimate required motor torque and energy consumption. Results are used
to dimension the drive train of a BEV. Moreover, based on energy consumption
of mission profiles, a simplified control strategy is implemented in the motor.
Furthermore to estimate driving ranges, the energy demand has to be predicted.



This is done by Vaz et al. (2015), Zhang et al. (2012) and Ferreira et al. (2013)
for a predicted speed profile.

The required tractive effort of a vehicle can be estimated by an LDM and is
therefore applicable for ICEVs as well. One difference is that, for a combustion
engine, efficiency varies more than for an electric motor and it strongly depends
on the rotational speed of the motor, i.e. the chosen gear. Demir et al. (2011) use
an LDM for estimating CO2 emissions of ICEVs, which are highly correlated
to energy consumption. Also Treiber and Kesting (2010) propose an LDM
for estimating fuel consumption, which is equivalent to energy consumption.
Regarding the efficiency, they assume that the driver is choosing the optimal
gear at each state. Therefore, the estimated fuel consumption is lower than in
real world conditions.

With the introduction of electric vehicles and their relatively short driving
ranges, methods emerged for finding the most energy efficient route. The prob-
lem consists of two main parts: estimating the energy consumption per road link
and applying an appropriate routing algorithm (Pelletier et al., 2014). Again
an LDM is used to obtain the energy consumption per road link, where a speed
profile has to be assumed (Sachenbacher et al., 2011; Artmeier et al., 2010;
Prandtstetter et al., 2013). For the routing algorithm, energy consumption is
the weight assigned to each road link. Since, for BEV, energy consumption on
some links can be negative (e.g. driving downhill), a classical Dijkstra-algorithm
is only applicable for ICEVs or if recuperated energy is ignored. Otherwise alter-
native routing algorithms have to be developed (Abousleiman and Rawashdeh,
2014). Moreover, energy efficient routing can be formulated as multi-objective
optimization problem, because travel time and energy consumption may con-
tradict each other. For example, a low speed route could be more efficient than
a highway due to higher air resistance at high speeds.

Although the LDM (with modifications) is prevalently used for estimating
energy consumption of vehicles, there are alternatives. Terras et al. (2011) apply
a vehicle model for energy estimation, which is more detailed than the LDM
and integrates vehicle parameters like wheel radius and transmission ratio. A
completely different modelling approach is chosen by Shankar and Marco (2013),
namely a neural network, which is a machine learning method for modelling a
non-linear relationship between several inputs and the output. Several trips are
divided into a large number of microtrips of 30 seconds and the neural network
is trained with these microtrips. 28 parameters of a microtrip describing, mainly
speed and acceleration of the trajectory, are used as input to the neural network
and the output is the measured energy consumption of the vehicle. The neural
network is able to accurately predict energy estimation, but it requires training
data. This approach is similar to the study of Diaz Alvarez et al. (2014), in
which 14 features of individual trips are used to train a neural network in order
to predict the energy consumption. Additionally, they perform a ’one at a time’
analysis, where only one input feature is varied, while all others are fixed and
the variability of the output is observed. Among features describing the driving
behaviour they conclude that jerk has the highest influence.

2.4. LDM in our Study

In contrast to the existing literature, in our study, we are assessing the
(in)accuracy of energy estimation, caused by the uncertainty of vehicle and



environmental parameters. The parameters with the highest impact are identi-
fied and it is recommended to determine them exactly, in order to achieve the
estimation accuracy required by the application.

Furthermore, we prioritize parameters according to their impact on estima-
tion accuracy. This is important because fixing a parameter value means putting
effort into determining its true value, e.g. by measuring it or requesting it from
the driver. Also for calibrating an LDM (e.g. for estimating energy demand
for a trajectory of a BEV), the performance of the calibration process regarding
computational effort and accuracy can be increased by calibrating only the most
influencing factors as proposed by the sensitivity analysis. When estimating a
driving range, the accuracy of energy demand estimation is related to the prob-
ability of running out of energy while driving. By knowing the uncertainty of
the estimated energy demand, the minimum driving range at a given probability
can be estimated. Therefore, the information about the uncertainty of energy
demand estimation leads to a more reliable driving range estimation.

3. Sensitivity Analysis

Sensitivity analysis is a method to study how uncertainty in the model inputs
affects the model response (Campolongo et al., 2011). It describes the relative
importance of each input factor in determining variability of model response.
According to Saltelli et al. (2004) there are four main settings for conducting a
sensitivity analysis:

e Factor prioritization aims at ranking factors according to the reduction of
output variance, which could be achieved knowing the true value of the
factor.

e Factor fixing aims at identifying factors having no influence on the output
and which therefore can be set to an arbitrary value within a predefined
range.

e Variance cutting aims at identifying a subset of factors to be fixed in order
to achieve a predefined reduction of variance of the model output.

e Factor mapping aims at identifying factors mostly responsible for causing
a realization in a predefined region of the output.

This study focuses on factor prioritization, i.e. which parameters have to
be chosen carefully to obtain a realistic energy demand estimation. Based on
this ranking, variance cutting is performed to achieve a desired variance for our
energy estimation. Prior to the sensitivity analysis, ranges for the factors have
to be defined, which represent the uncertainty encountered in reality. Increasing
the uncertainty of a parameter will increase the output variance. Therefore, the
uncertainty range for each parameter has to be defined carefully.

8.1. Sobol’s Sensitivity Index

Two important sensitivity indices are frequently used for sensitivity analy-
sis (Saltelli et al., 2004): The first-order sensitivity index (SI) is equal to the
first-order effect of each factor normalized by the total variance, and it can be



interpreted as the portion of the output variance that is due only to the varia-
tion of one input factor. This indicator captures the ”stand-alone” effect of the
input factor on the model output. Assuming a set of vectors (X1, Xo, ..., X,,)
representing the input factors of the model, then the SI of parameter ¢ can be
computed as

V(E(Y|X:))
GO ?)

where V is the variance, E the expectation value and Y represents the model
response. For parameter i, the expectation value of the model output, given the
variation of all parameters but 4, is estimated. The variance of this expectation
value is estimated for all values of X; and normalized by the total variance.

For non-additive models, the interaction of each factor with some or all of
the input factors may influence output variance, referred to as interaction (or
higher order) effect related to each factor. The total sensitivity index (TSI) is
the sum of the first-order effect of each factor and of all the higher order effects
that involve this factor, normalized by the total variance. The sum of the first-
order and higher order effects for all the input factors explains the total output
variance. The TSI for parameter 7 is calculated by

SI; =

EVYIX_.))

vy)

where X_; means that all parameters except i are fixed. To calculate the
TSI, the output variance is estimated for different values of X;. The expecta-
tion value of this variance over all values of X, is then normalized by the total
variance. It is important to consider whether the investigated factors are inde-
pendent respectively orthogonal. As the model parameters can be considered as
independent from each other, sensitivity analysis can focus on the interactions
of factors. One pair of known interacting factors is basic energy demand and
average vehicle speed (cf. Figure 6).

TSI, = (10)

3.2. Parameters of the Longitudinal Dynamics Model

The LDM, as described in Section 2.1, contains eleven parameters. Param-
eter values may vary for different trips or even within a trip and are not always
easily accessible (e.g. total weight, efficiency). Subsequently, the uncertainty
range of each parameter is discussed based on literature and measurements
from a BEV (Mitsubishi i-MiEV). This vehicle represents an average BEV and
many parameters are similar or equal in other passenger cars. Moreover, the
uncertainty of parameters is expected to be in the same magnitude for common
passenger BEVs.

1. Efficiency of driving (75s): The power to accelerate has to be provided
by the drive train of the vehicle. A simplified illustration of the drive train
of a BEV is presented in Figure 2.
Each component of the drive train has a certain efficiency, of which some
vary with power and/or speed. Total efficiency of the drive train is the
product of efficiency of the battery npqttery, power electronics neiectronic,
electric motor My, otor and transmission M,qnsmission- Liosses of the battery
are caused by the internal resistance and increase with power. For a
lithium ion battery and a power up to 50 kW, efficiency varies between
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Figure 3: Performance map of an electric motor (EVO Electric, 2014).

0.99 and 0.95 (Koehler et al., 2012). The power converter is responsible
for converting direct current (DC) of the battery to alternating current
(AC) for the electric motor. Nowadays, converters achieve high efficiencies
of 0.98 over a wide load range (Hayes et al., 2011). The highest variability
of drive train efficiency is caused by the electric motor. In Figure 3, the
performance map of a synchronous motor with permanent magnets, as
used in electric vehicles, is presented. The map shows that an electric
motor is able to work at an efficiency of up to 0.96. For a large range of
rotational speeds and torque, the efficiency does not fall below 0.75. Thus,
in our study, we assume the efficiency of the electric motor to be between
0.75 and 0.96.

Finally, the efficiency of a single gear transmission is above 0.97 for a wide
rotational speed range (Hayes et al., 2011). Efficiency of the drive train
is the product of efficiencies of individual components and therefore 7,
varies between 0.63 and 0.9 (considering individual variations).

. Efficiency of recuperating (7n¢): In case a negative torque is acting

on the wheels of the vehicle, the electric motor is working as a generator
and is producing electric energy. Thus, energy is flowing in the oppo-
site direction compared to driving. Again total efficiency is the product
of efficiency of each component of the drive train. The efficiency of the
transmission is approximately 0.97, as indicated by Hayes et al. (2011).

10



The efficiency map of an electric motor in generator mode is almost iden-
tical to driving mode (cf. Schwingshackl, 2009). So the efficiency range
of the electric motor is defined equally for both operational modes (0.75
to 0.96). During recuperation, the power electronic is converting AC to
DC, which can be done at high efficiency (0.98). During recuperation,
electric energy is transmitted back to the battery and therefore charging
losses have to be considered. According to Hayes et al. (2011), efficiency
of an on-board charger is 0.9. Therefore, total efficiency of the drive train
during recuperation 7g, which is the product of individual efficiencies, is
within in the range of 0.64 to 0.82.

. Total mass (m): The total mass is composed of the curb weight, weight of
the driver, passengers and additional payload (e.g. luggage). The vehicle
mass is well described in technical specifications of the BEV and does not
vary during a trip. At least the weight of one driver has to be added
to the vehicle mass, for which a minimum value of approximately 60 kg
can be assumed. Most BEVs offer seats for four passengers and therefore,
the total mass may be significantly higher than the vehicle mass. The
curb weight of the Mitsubishi i-MiEV is 1085 kg and we assume that the
occupation of the vehicle varies between one light driver and a normal
driver plus three passengers, each with an average weight of 80 kg (but no
payload). Therefore, the variation of total weight is in the range of 1145
kg to 1405 kg.

. Mass factor (f): A BEV also consists of rotating parts (motor, trans-
mission, wheels), whose rotational inertia has to be considered. Since the
exact mass and dimension of these rotational parts is unknown or difficult
to determine, the mass is multiplied by a constant factor greater one. Ac-
cording to Ehsani et al. (2009) or Maia et al. (2011), the mass factor is
1.05. In other studies the mass factor is not considered at all (cf. Nandi
et al., 2015). Therefore we assume the mass factor in the range of 1.0 to
1.05

. Gravitational acceleration (g): Gravity is an attraction force be-
tween two masses (earth and vehicle) and depends on mass and distance.
The gravitational acceleration on the earth surface varies between 9.76 7z
(Nevado Huascaran mountain, Peru) and 9.83%; (Arctic ocean)(Hirt et al.,
2013). In our study, we assume a BEV operating in a limited area and
therefore a constant value of 9.8173 is used.

. Rolling friction coefficient (c,..): This coefficient depends on proper-
ties of the tires and the road surface. Hysteresis effects during deformation
of the tire, when rolling on a hard surface, cause an opposing force (Ehsani
et al., 2009). The deformation depends on the type of tires, inflating pres-
sure and temperature. The rolling resistance is further influenced by the
macro texture of the asphalt and the velocity of the vehicle (Bosch, 1996;
Ehsani et al., 2009). The rolling friction coefficient is difficult to mea-
sure and a standardized method has not been established. Researchers
assume different values for ¢, ranging from 0.005 (Maia et al., 2011) to
0.015 (Demir et al., 2011). According to a study of the Transportation
Research Board (National Research Council, 2006), a rolling friction coef-
ficient between 0.007 and 0.014 can be assumed for most passenger cars.
This range is applied in our study and conforms well with values given
in the automotive handbook by Bosch (Bosch, 1996), a frequently cited

11
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reference on this issue.

Air density (p): The resistance of a body moving in a fluid depends on
the density of the fluent and is measured in mass per unit volume. For
BEVs, air density is relevant to determine the air drag and depends on
temperature, pressure (confirms to altitude) and humidity (NASA, 1954).
Applications for calculating the air density (e.g. DeNysschen, 2015) based
on altitude, temperature and humidity can be found on-line. For our
BEV trips we observe altitudes in the range of 100 to 700 m above sea
level and a temperature between -5°and 30°Celsius. For these ranges, air
density may vary between 1.055 and 1.296 % We assume 70% humidity
but it has, however, only a small influence on air density. For example,
increasing humidity from 50% to 100% would change air density by less
than one percent.

Air drag coefficient (¢, ): This vehicle specific constant depends on the
shape of the vehicle. The ¢, of current cars ranges between 0.24 (Tesla
model S) and 0.38 (Subaru Forester), where lower values equal lower air
drag. The air drag coefficient is determined by car manufacturers, where
usually a single value for a given vehicle is specified. In contrast, in Hucho
(1987) a uncertainty range for the air drag coefficient for different vehicles
up to 6% is specified. Moreover, the air drag coefficient does not depend
solely on the vehicle shape. For a fully loaded small- to medium-sized car,
the angle of attack is changed and increases the air drag coeflicient by
approximately 2%. Moreover, an opened window increases the air drag
coefficient approximately by the same amount (Hucho, 1987). Therefore,
in our study, we assume an uncertainty range of 10% from manufacturer
specifications. For the i-MiEV a ¢,, value of 0.35 is specified. Therefore,
an uncertainty range between 0.333 and 0.368 is assumed.

Front surface area (A): The front surface area can be computed as the
product of overall width and height of the vehicle, where a certain ground
clearance has to subtracted from the height. This is an approximation
because vehicle shapes are not ideal rectangles and the front area of the
wheels has to be considered as well. Therefore, we assume an uncertainty
range of 10% of the front surface area based on the product of width and
height minus the ground clearance. Thus, the front surface area for the
investigated vehicle varies between 1.81 m? and 2.01 m?.

Auxiliary power demand (FP,): Additional electric energy is necessary
to operate the vehicle, for example, to power the on-board electronics.
Depending on environmental conditions (illumination, temperature, etc.)
and driver behaviour, extra power is necessary for light, heating, cooling,
radio etc. Energy consumption of different consumers and their impact on
driving range is described in Geringer (2012) and Benders et al. (2014).
In theses studies, an upper bound for auxiliary energy power demand is
given (e.g. maximum power of heater), but we are more interested in a
realistic range for this parameter. Therefore, we rely on energy consump-
tion measurements from a BEV and define a range which covers 90% of all
situations. In Figure 4, we show the frequency of observed values for the
auxiliary power demand. The evaluation is based on our recorded BEV
data where the required auxiliary power is the measured electric power
during stops. Assuming the 5th and 95th percentile as bounds for the un-
certainty range, we obtain a minimum of 236W and a maximum of 1266W
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Figure 4: Histogram of observed auxiliary power values.

Nr. | Parameter Min Max | Default
1 Efficiency (drive) 0.68 | 0.9 0.9
2 Efficiency (recuperation) 0.62 | 0.83 | 0.8
3 Total mass, Kg 1145 | 1405 | 1145
4 Mass factor 1 1.05 1
) Gravitational acceleration 9.81 9.81 9.81
6 Rolling friction coefficient 0.007 | 0.014 | 008
7 Air density, Kg/m?> 1.055 | 1.296 | 1.2
8 Air drag coefficient 0.333 | 0.368 | 0.35
9 Front surface area, m? 1.81 2.01 1.9
10 | Auxiliary Power, W 236 1266 | 0.45
1 Minimum speed for recuperation, 0 15 10
km/h

Table 1: Uncertainty ranges for parameters of the LDM.

for the auxiliary power demand.

11. Minimum speed for recuperation (V,,;,): For a BEV it is not possible
to regenerate electric energy during braking at low speeds because of the
low electromotive force generated at low motor rotational speeds (Ehsani
et al., 2009). For this reason, a minimum speed for recuperation has to
be introduced, with no energy being recuperated below this limit. Ehsani
et al. (2009) define this limit at 15km/h. In other studies (e.g. Maia et al.,
2011), a recuperation is possible for all speeds. Therefore, in our study, we
assume the uncertainty range of this parameter between 0 and 15km/h.

Table 1 summarizes the ranges for each parameter as discussed.

4. Trip Database

For the sensitivity analysis in our study we use 1 Hz GPS records from a BEV
(Mitsubishi i-MiEV). Rebadged variants of the i-MiEV are also sold as Peugeot

13
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Figure 5: Error distribution of trajectories with 1Hz resolution compared to 10Hz.

iOn and Citroen C-Zero. The driver of the BEV is also the owner and was not
instructed regarding the driving style. These data were recorded in the course of
his daily activities (e.g. home to work trips) and consist of trips in both urban
and rural environments in the area of Vienna, Austria. The trips cover different
road categories with speeds up to 130km/h and with different elevation profiles.
Since all trips come from the same driver, the driving behaviour is assumed
to be consistent. The mileage of trips is obtained by summing up distances
between consecutive locations and acceleration is calculated from changes in
speed. For the investigated vehicle, the electric power at the output of the
battery is measured and used for the analysis.

4.1. Sampling Error

Since locations and velocities are recorded at 1 Hz, the question is how
much error is introduced by this sampling rate. Baouche et al. (2013) compare
the estimated energy consumption for different aggregation intervals of velocity
profiles. As expected, the relative error is decreasing with shorter aggregation
intervals (higher resolution). The shortest aggregation interval in Baouche et al.
(2013) is 1 minute, resulting in a relative error of 4%. In order to determine
whether or not 1 Hz is sufficient, we used simulated vehicle speed profiles. Using
the microsimulation tool VISSIM, an urban road network with several intersec-
tions is created and trajectories of vehicles are recorded at a sampling rate of 10
Hz. Afterwards, the resolution of each trip is decreased to one measurement per
second. For both high and low resolution, data energy consumption is estimated
and compared. In Figure 5, we visualize the distribution of deviations between
energy consumption estimates with low and high resolution trajectories. The
average deviation is below 0.1 kWh/100km, which equals a relative deviation of
approximately 0.1%. Therefore, we conclude that increasing the sampling rate
to 10 Hz yields no relevant improvements for energy consumption estimation.
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4.2. Elevation Data

In contrast to driving cycles, our data contain elevation information and
therefore a road gradient a (Eq. (2)) can be calculated. Ignoring this value
can significantly increase the error of the energy estimation model as discussed
by Graser et al. (2014). Elevation information and thus road gradient can be
derived from different data sources using different sampling methods. We use the
EU-DEM, which is a digital surface model covering Europe, created in the course
of the Copernicus programme funded by the European Union. The data have
been released in November 2013 (INSPIRE Forum, 2014) and are provided at a
resolution of 25 meters with elevation values stored as floats. EU-DEM is based
on SRTM and ASTER GDEM data (European Environment Agency, 2014). Tt
is worth noting that similar resolution data are available globally as well since
the U.S. decided to release SRTM data in 30 meter resolution in 2014 (NASA
JPL, 2014). DEMs of this resolution provide a sufficiently detailed basis for
energy estimation in most settings but Graser et al. (2015) showed that higher
resolution DEMs should be used in mountainous regions, since computations
based on EU-DEM overestimated energy demand by 20 to 25% compared to a
locally available 10 meter DEM in the Alpine test region. There is currently
no free global source of DEMs at this level of detail. Elevation values are
determined from the DEM for every point of the trajectories using bi-linear
interpolation raster sampling which computes the value based on the nearest
four raster cell centres. This method is chosen since bi-linear interpolation
results in significantly better energy estimation than simple nearest neighbour
sampling (Graser et al., 2015). For our trajectories, elevation values between
112 and 670 meters above sea level are observed.

4.8. Trip Selection

Since we analyze sensitivity of the LDM under different conditions, the anal-
ysis is applied to individual trips. All GPS records are split into trips with a
duration of 10 minutes. In this way, we can structure our trip database into 945
trips with different speed and elevation profiles. Another advantage of shorter
trips is that the average velocity is a better approximation of the speed profile
than in the case of longer trips. Moreover, trips are still long enough to contain
different values of acceleration and deceleration. We use these trips to analyze
energy shares (cf. Section 5) and a subset is used to perform the sensitivity anal-
ysis. Since the composition of this subset results from our energy share analysis,
we describe the selection of the subset at the end of the following section.

5. Energy Shares

Before discussing the sensitivity analysis, we present our findings on the com-
position of the total energy estimate based on the individual LDM components.
When calculating the total energy consumption of a trip, the energy related
to each term of the right side of Eq. (2) is determined, as well as the energy
required for acceleration (Eq. (1)). Additionally, the efficiency of the drive train
(drive and recuperate) is applied to each component. Thus, the required energy
for overcoming the grade resistance does not sum up to zero, even if origin and
destination of a trip are at the same altitude. Finally, the basic energy demand,
which depends on auxiliary power and travel time, is estimated as well.
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Figure 6: Average energy shares in dependence of average trip speed.

The energy shares are calculated for all 945 trips and an average value for
each share and speed category is computed. For the LDM, the default parame-
ters, as listed in Table 1, are assumed. In Figure 6, we present the average energy
consumption related to each LDM component over different average trip speeds.
Note that, although the length of the trips is varying, energy consumption is
always extrapolated to 100km (cf. y-axis in Figure 6).

Figure 6 shows that the air drag is responsible for the majority of energy
consumed at high speeds (> 80km/h) but its influence is decreasing for lower
speeds. Contrary to the air drag, the energy required for accelerating is domi-
nant at low speeds (< 30km/h), but less important at higher speeds. The same
is visible for the auxiliary power, where a relatively low value for P is assumed
(cf. Table 1). The energy consumption related to the rolling resistance is con-
stant because it depends only on the distance travelled and we extrapolate trips
to 100km.

On average, the energy related to grade resistance is rather low (approx.
10%). As discussed by Graser et al. (2014), significantly larger energy losses
can be expected in mountainous regions. To study the influence of elevation,
we investigated individual trips using two indicators which are derived from the
elevation profile: H g is the difference in elevation between origin (H i) and
destination (Hges:) and is presented in Eq. (11).

Hdiﬁ = Horig — Hgest (]-]-)

Although origin and destination of a trip are at the same altitude, the eleva-
tion profile may vary during a trip. Therefore, the second indicator Hy;, is the
sum of elevation differences along a trip. From this sum, Hg;g is subtracted,
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Figure 8: Energy related to grade resistance for different elevation profiles.

in order to obtain an indicator, which is independent of the elevation difference
between origin and destination. The calculation is described in Eq. (12), where
H, ., ; is the altitude at the consecutive location along the trip.

N—1
Hyayy = > [Hi — Hit 1| — |Haigy| (12)
i=1
Figure 7 illustrates these indicators using three examples for different eleva-
tion profiles and in Figure 8, we present the energy related to grade resistance
for all available trips. Increasing either indicator results in an increased energy
demand. The results also show that Hj;y has less influence than Hg;y. The
energy consumed for driving uphill is preserved as potential energy and can be
recuperated later on, when driving downhill. Although it is not lost, to reach
an elevated location, this energy has to be provided by the battery and affects
the driving range estimation.
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8 80 [85,90] 0.47 1456 1086 uphill trip
9 80 [69,93] 0.45 -2265 2774 downhill trip

Table 2: Trips used for sensitivity analysis.

This preliminary analysis shows that all components of the LDM have a
significant influence on the total energy consumption. If a LDM is used for a
specific subset of the road network (e.g. only motorways) and speeds within a
restricted range, some of the components can be ignored, including parameters
exclusively related to these components. Auxiliary power has less influence for
high speeds, because travel time is shorter for the same distance (100km). In
our case, we are interested in the sensitivity of each parameter for the complete
road network and therefore cannot exclude any parameters a priori .

Since energy shares vary with speed and elevation, this influence has to be
considered when performing the sensitivity analysis. The selected trips are de-
scribed in Table 2 and represent different speed and elevation profiles. To study
the influence of speed on sensitivity, trips with different average velocities but
similar altitude at origin and destination are selected (first six rows in Table 2).
Moreover, all of these trips had comparably small elevation differences along the
trip (Hpiuy). Three more trips are selected for studying only the influence of
different elevation profiles and therefore, all of them have the same average ve-
locity. Trip seven has large elevation differences along the route but almost the
same altitude at origin and destination. The last two rows of Table 2 represent
trips leading uphill (trip eight) and downhill (trip nine). These nine trips cover
different speed and elevation profiles and are used to investigate the influence of
speed and elevation profile on the sensitivity of the model parameters. Because
of the large number of samples of parameter settings (150000), conducting the
sensitivity analysis is computationally intensive and therefore we had to limit
the number of trips.
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6. Sensitivity Analysis Results

In this section, we present the results of the sensitivity analysis of the LDM
applied to individual trips with varying speed and elevation profiles. In a first
step, the first-order sensitivity index (SI) is calculated and compared to per-
form a factor prioritization. Afterwards, the total sensitivity index (TSI) is
determined and parameters ranked according to their TSI. Based on this rank-
ing, a subset of factors is determined, which has to be fixed, in order to reduce
output variance to a predefined limit (variance cutting).

The objective is to identify the influence of the parameters of the LDM on
the model output, namely energy consumption per distance unit (Eq. (8)). To
calculate Sobol’s sensitivity indices (SI and TSI), the model is executed with
semi-randomly sampled parameters, within the ranges given in Table 1. For
each trip 150,000 parameters settings are chosen in that way and the model
output (energy consumption per 100 km) is calculated. Finally Sobol’s SI and
TSI are calculated according to Eq. (9) and Eq. (10)).

6.1. Factor Prioritization

According to Saltelli et al. (2004), the SI is the proper measure to perform
a factor prioritization. A large SI value indicates a high influence of the cor-
responding parameter on the model output. This implies that this parameter
has to be adjusted as accurately as possible, in order to maximize accuracy for
energy demand estimation. In contrast, a SI close to zero means that the corre-
sponding factor can be fixed at an arbitrary value within the predefined ranges,
without significantly influencing the model response. In Figure 9, we present
the SI of each parameter of the LDM for trips with different average speeds but
small elevation differences (compare H gy and Hpyyy in Table 2.

A high influence is visible for efficiency (drive) and rolling friction coefficient
for all trip speeds. Auxiliary power also has a large influence, but only for speeds
below 80km/h. In general, parameters related to the air drag (air density, air
drag coefficient and front area) have a low influence, especially for speeds below
80km/h. However, for higher speeds, the air density gains importance to ac-
curately estimate energy consumption. The influence of recuperation efficiency
and total mass is rather small (< 0.1) in this setting. Minimum recuperation
speed and mass factor can be ignored at all speeds, since their impact on model
results is almost zero. Vertical bars in Figure 9 represent the confidence in-
tervals, since variances are estimated for a limited sample size and therefore
deviate from the true variances.

Note that, although factors regarding the air drag (air density, air drag
coefficient and front area) have a small influence on the output variance, this
does not mean that only little energy is needed to overcome the air drag (as can
be seen from Figure 6). It just means that the parameters can be varied within
the predefined ranges without significantly changing the energy consumption
estimate.

As mentioned in the discussion of the state of the art regarding the LDM (see
Section 2.3), velocity and acceleration are suitable indicators to describe driving
behaviour. The investigated trips exhibit different speeds and accelerations (cf.
Table 2), and therefore we are able to observe the effect of speed and acceleration
on the sensitivity of the LDM.
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Figure 9: First-order sensitivity index (Eq. (9)) of trips with different velocity. Vertical bars
represent 95% confidence intervals. The values in brackets denote the uncertainty range of
model parameters.

The velocity chosen by the driver affects air drag and travel time. As men-
tioned above, SI values of parameters related to the air drag resistance are
increasing with increasing speed but are significantly lower compared to the
rolling friction coefficient, efficiency or auxiliary power. On the other hand,
longer travel times, e.g., caused by a defensive driving style, will increase the
effect of auxiliary power consumption on estimation accuracy.

From Eq. (1) we see that acceleration is only related to mass and mass factor.
As shown in Figure 9, the sensitivity of the LDM in dependence of these two
parameters is rather small and almost constant, although the investigated trips
exhibit different average accelerations. Therefore, we conclude that average
acceleration as a descriptor of driving behaviour has no influence on the SI of
parameters.

The analysis above is performed with trips without elevation differences be-
tween origin and destination and only small elevation differences during the trip.
To analyze the impact of parameters in a hilly road network, we selected trips
with significant elevation differences between origin and destination. Addition-
ally, a trip with no elevation difference between start and end but differences
during the trip is analyzed. Details regarding the elevation profile are summa-
rized in Table 2. For all trips, an average trip velocity of 80km/h is measured.

In Figure 10, we present the SI for different elevation profiles. For comparison
purposes, the SI of a trip with flat elevation profile and same velocity is plotted
as well.

The prioritization of parameters is similar regardless of the elevation profile.
Main factors are efficiency (drive) and rolling friction coefficient for all trips.
The total mass has a significant impact for trips with varying altitude and/or
moving up but can be ignored for trips ending at a lower altitude than their
starting position. However, for trips going downward efficiency for recuperation
gains importance. For all other parameters the impact on model results nearly
is constant for different elevation profiles.

The analysis presented in this section provides a parameter prioritization
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Figure 10: First-order sensitivity index (Eq. (9)) of trips with different elevation profiles.
Vertical bars represent 95% confidence intervals. The values in brackets represent uncertainty
range of model parameters

with respect to their impact on the accuracy of the energy demand estimation.
It has to be emphasized that the SI, represents the share of variance, which is
caused by the uncertainty of a parameter. Thus, to determine the (in-)accuracy
of the model, the total amount of variance has to be considered as well. Oth-
erwise, a parameter may have a large impact, but due to a small variance this
impact is irrelevant. This effect is considered in variance cutting, which we
present in the subsequent section.

6.2. Variance Cutting

The aim of variance cutting (VC) is to identify a subset of parameters to be
fixed within their uncertainty range, in order to reduce the variance V' of the
output by a predefined value V.. In other words, which parameters may be left
undetermined while the output variance does not exceed V —V,.. This threshold
corresponds to the maximum allowed inaccuracy of our model. For example if
we define a maximum deviation of 10% given an average energy consumption of
16kWh/100km, we say that in 95% of cases, the energy consumption has to be
between 14.4 and 17.6 kWh/100km, corresponding to a standard deviation of
0.8 and a variance of 0.64. If we now reduce our output variance to 0.64 or less,
the error of our energy estimation will not exceed 10% (in 95% of the cases).
For orthogonal input factors, the following empirical procedure, suggested by
Saltelli et al. (2004), is used. We compute the full set of SI and TSI and use
the latter to rank the parameters. The ranking refers to the order of variance
caused by each parameter. Beginning with the first element (highest TSI), the
corresponding variance V,, is compared to threshold V.. In case V,,, > V;., we
found the parameter to be fixed in order to limit our output variance as desired.
Otherwise, the second element of our sequence has to be considered. In case
(Vo + Vp,) > V., the first two parameters have to be fixed. If this is not the
case, the third element is considered and so on. This only works if the model is
additive in its factors and they are not interacting. For additive models, the SI
of all parameters will sum up to one. As mentioned by Saltelli et al. (2004), it
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Figure 11: Variance cutting for trip 4 with two different thresholds (red)

is also valid to assume an additive model if experiments show that the sum of
SI is 1, even if the analytical formulation shows interactions.

From Table 3, we see that the sum of the SI of the parameters is close to
one in all cases and therefore we can assume an additive model. In Table 3, we
also listed the output variance V for each trip, which has to be multiplied by
the SI of parameter ¢ (see Figure 9 and 10) in order to determine V,,.

In Figure 11, we present an example for variance cutting. In a first step, all
parameters are ranked from left to right according to their T'SI. This ranking
represents the sequence in which individual parameters are fixed. If no param-
eter is fixed, then the model has the highest variance (cf. leftmost column in
Figure 11), which is the same value as in Table 3 (variance before VC). The
largest reduction of variance can be achieved by fixing the parameter with the
highest TSI (leftmost parameter), which is the driving efficiency. When this pa-
rameter is fixed the variance is reduced by the variance before variance cutting
times the TSI (of driving efficiency). If the remaining variance falls below our
threshold we have achieved our predefined level of accuracy. Otherwise, we have
to fix an additional parameter and further reduce the variance. The choice for
the parameter to be fixed next is based on the descending ranking of the TSI.
In Figure 11, the decreasing line represents the reduction of variance for factors
fixed according to their rank. The dashed lines are the two thresholds which
the variance is compared to each time a parameter is fixed. By fixing efficiency
(drive) and rolling friction coefficient, the output variance can be reduced to
approximately 0.5 and falls below the threshold of 0.64 (red dashed line). If we
now reduce the threshold V — V;. to 0.16 (5% error in 95% of the cases), fixing
only efficiency (drive) and rolling friction coefficient is not sufficient. Instead,
total mass, auxiliary power and air density have to be considered in order to
achieve the desired model accuracy.

We repeat the procedure for VC for all trips listed in Table 2 and summarize
the results in Table 3. Each row represents the result for one trip. The numbers
in the columns associated to the parameters, represent the ranking for VC with
a variance threshold of 0.16 (5% error). This means that in order to achieve
an error smaller than 5% it is necessary to fix all parameters which are marked
by a number in Table 3. If the application allows for a 10% error (threshold of
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1 2 3 1 5 4 3.961 | 0.316 | 0.037 | 0.98
2 1 2 3 4 2.024 | 0.164 | 0.044 | 1.02
3 1 2 3 1.919 | 0.381 | 0.155 | 0.97
4 1 2 4 13 5 2.689 | 0.502 | 0.092 | 0.97
5 1 2 5 3 4 2.801 | 0.604 | 0.065 | 1.03
6 1 2 6 | 3 5 | 4 4.581 | 0.626 | 0.063 | 1.04
7 1 2 4 3 5 3.595 | 0.392 0.16 0.98
8 1 2 5 3 4 4.573 | 0.324 | 0.126 1.0
9 1 2 4 5 3 2.185 | 0.528 | 0.079 | 1.01

Table 3: Summary of variance cutting for 5% and 10% (gray) error. Each row represents the
result of VC for individual trips. Variance of energy consumption, measured in kWh/100km,
is calculated.

0.64), our VC results show that more parameters can be ignored and only those
marked with a gray background are necessary. Empty cells indicate that the
corresponding parameter is irrelevant to achieve a 10% or 5% error, respectively.
In addition to the ranking of parameters, the variance values before and after
VC are listed in the columns on the right side of Table 3. For the different
trips, the output variance is not constant and is highest for low velocities (trip
1) and high velocities (trip 6). However, the ranking of parameters is similar
for different trips. Efficiency (drive) is always the most important parameter,
followed by the rolling friction, except for trip 1. For a higher threshold (10%
error), auxiliary power is only relevant for trips at low speeds (< 40km/h), but
it can only be ignored for high speeds (trip 6) in case the lower threshold is
applied. Total mass is relevant either for trips in hilly environments or when
the lower threshold (5% error) is applied.

Air density has to be considered for speeds > 60km/h. Efficiency (recuper-
ation), air drag coefficient and front area have to be considered only if the more
restrictive threshold (5% error) is chosen. Finally, the mass factor and minimum
speed for recuperation can always be ignored.
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7. Conclusions

In our study, we analyze the sensitivity of the energy consumption of a BEV.
A literature study reveals that an LDM is widely used, but a detailed analysis
of the model parameters and assessment on how the choice of each parameter
value affects the model response is missing. The common approach for setting
parameter values is to rely on references, but different references suggest quite
different values. In a first step, we therefore determine the energy share related
to each component of the LDM. The different energy shares depend on velocity
and elevation profile. The most energy is consumed at low speeds (due to
auxiliary energy demand) and at high speeds (due to the air drag).

In addition, we identify the uncertainty range for each parameter. It rep-
resents the range within which the parameter values of a specific vehicle (in
our case a Mitsubishi i-MiEV) can vary, since they are unknown or difficult to
determine. The accuracy of energy demand estimation for driving this vehicle
depends on the uncertainty range.

Furthermore, a SI is calculated to prioritize the influence of parameters on
the energy consumption estimation (factor prioritization). This and all other
indicators are calculated for selected trips with different average speeds and ele-
vation profiles. Regarding the elevation profile, we distinguish between elevation
difference between origin and destination of the trip and elevation differences
along the route.

From the analysis we deduce, that regardless of the elevation profile, the
most important parameters are efficiency (drive), rolling friction coefficient and
auxiliary power demand. Moreover, auxiliary power demand is only relevant
for speeds below 80km/h. On the other hand, the air density is only relevant
for high speeds (> 100km/h) and the total mass only for trips moving upward
and in hilly environments. Finally, efficiency (recuperation) is relevant just for
downhill trips.

It has to be emphasized that, although the uncertainty of some parameters
has no impact, this does not mean that only little energy is spent on the com-
ponent related to this parameter (e.g. front surface area is related to the air
drag).

Driving behaviour is not considered in detail in our study. It is considered
insofar, as the sensitivity analysis is performed for different speeds and average
accelerations. The only relevant effect of driving behaviour can be argued for
auxiliary power consumption because this parameter gains in importance for
larger travel times (due to different driving behaviour).

The results of the factor prioritization help to identify important parameters
for calibrating the energy demand estimation. If a large number of parameters
has to be calibrated, computational effort and the risk of finding a local op-
timum is increased. Therefore, a reduced number of parameters can alleviate
both problems. To limit the output variance, and thus the model error, variance
cutting is performed. Given a maximum error of 10% and 5%, two thresholds
for the output variance are defined. Results show that, for all trips, efficiency
and rolling friction coefficient have to be fixed to keep the output’s variance be-
low the predefined thresholds. For trips with low average speeds (< 40km/h),
auxiliary power and for high speeds (> 120km/h) air density has to be fixed as
well. Additionally, hilly environments or trips leading uphill require fixing of
the total mass. If a lower maximum error is desired (5%), the subset of param-
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eters to be fixed, has to be extended to all parameters, except mass factor and
minimum speed for recuperation. However, results from the VC show that the
largest reduction of uncertainty can be achieved by determining correct values
for efficiency (drive), rolling friction coefficient and auxiliary power demand.

The method described in this study can be used to apply any kind of ve-
hicle energy demand estimation. It helps to decide which factors of the model
have to be calibrated more thoroughly and under which circumstances. More-
over, the analysis of energy shares reveals possibilities for reducing the energy
consumption, e.g. by driving neither too fast nor too slow.

Based on these results, future research activities should focus on reducing the
uncertainty of the drive train efficiency, rolling friction coefficient and auxiliary
power demand. For some BEVs models, the efficiency map of the electric motor
is available and can be incorporated into the LDM. A model for identifying
the rolling friction coefficient depending on the road macro texture and speed
is developed in the project MIRAVEC (Haider et al., 2014). Since the macro
texture is measurable, this model may be integrated in an enhanced LDM.
Furthermore, the constant auxiliary power demand can be replaced by a model
with weather conditions as input data.
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