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Abstract

Influence maximization aims at identifying a limited set of key individuals in a (social) network
which spreads information based on some propagation model and maximizes the number of individ-
uals reached. We show that influence maximization based on the probabilistic independent cascade
model can be modeled as a stochastic maximal covering location problem. A reformulation based
on Benders decomposition is proposed and a relation between obtained Benders optimality cuts and
submodular cuts for correspondingly defined subsets is established. In a computational study our
branch-and-cut approaches outperform the state-of-the-art approaches for influence maximization by
orders of magnitude.

1 Introduction

Recently, one can observe an increased interest in optimization problems related to the propagation of
information in (social) networks, see, e.g., the seminal work in [11] (and its journal version [12]) and an
extensive introduction and overview on the topic in [2]. Variants of the so-called influence maximization
problem typically aim at finding a small set of key individuals in the network which is denoted as “seed
set”. External means (e.g., monetary incentives) are used to convince all members of this seed set to
spread some information to all directly connected individuals (e.g., followers or friends). This initial
spread of information triggers a propagation process in which every active individual forwards (the
previously received) information to its neighbors. Thereby, each individual exerts a specific influence
to each of its neighbors and a higher influence increases the probability that the receiving individual is
activated (e.g., convinced of an information or product). The goal of influence maximization problems
is choose a seed set of limited size such that the (expected) number of finally active individuals is
maximized. Closely related problem variants want to minimize the costs for a seed set given that a
certain fraction of all individuals is reached, see, e.g., [7]. Besides (viral) marketing in (social) networks,
similar propagation models have applications in, e.g., epidemiology [6, 13].

Two main classes of information propagation models have been considered in the literature: (i)
threshold models and (ii) cascade models. In the linear threshold model proposed by [8], each individual
is assigned a hurdle or threshold value and each directed connection between two individuals has a
predefined influence value. An individual not contained in the seed set is activated the (weighted) sum
of influence values from active neighbors is at least as high as its hurdle. In the general threshold
model arbitrary functions of the influence values from active neighbors and incentive values can be
used, see, e.g., [7, 16]. Cascade models [11] assign probabilities to individual connections that represent
the chance that the source individual activates the target individual. Activation attempts are made
immediately after the source gets active and activation probabilities may change with time and depend
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on the set of individuals who already tried to influence a particular target individual. The special case
of the independent cascade model in which each activation probability is constant and independent from
previous attempts to influence the target individual has received a lot of attention in the literature. To
this end we refer, e.g., to [1] for a competitive two-player variant and [15] for a survey on fast and scalable
heuristics. In [11] the authors have shown that the most general variants of the two classes—the general
threshold and the general cascade model—are in fact equivalent, whereas this is not the case for the
linear threshold and the independent cascade model.

The influence maximization problem (IMP) considered in this article is defined on a directed graph
G = (V,A) in which nodes V represent individuals and arcs (i, j) ∈ A correspond to individual i
influencing (or activating) j with probability pij , 0 ≤ pij ≤ 1. Information propagation is based on
the independent cascade model and we assume that active individuals cannot be deactivated again. A
feasible solution to the IMP is defined by a seed set S ⊆ V whose size is limited by parameter K ≤ |V |.
We aim to find a seed set S∗ which maximizes the expected number of active nodes after the propagation
process. Exactly evaluating the objective function for a given seed set would require the consideration of
all 2|A| combinations of arc influence realizations with according occurrence probabilities. Since this is
not tractable for reasonably-sized instances, in [11] the probabilistic propagation process is approximated
by a restricted set Ω of scenarios obtained by Monte-Carlo sampling. Each scenario ω ∈ Ω is represented
by live-arc graph Gω = (V,Aω), Aω ⊆ A, where arc (i, j) ∈ Aω indicates that a previously inactive node
j is activated by i in scenario ω if i is active. Arcs (i, j) ∈ A are included with probability pij (decided
by biased coin flipping) in each scenario, i.e., in arc set Aω. Let Φω(S) denote the number of activated
nodes in scenario ω ∈ Ω for a given seed set S, and pω be the probability of scenario ω ∈ Ω. Then, the
variant of the IMP considered in this article is formally defined as

S∗ := argmaxS⊆V,|S|≤K
∑
ω∈Ω

pωΦω(S).

We note that Kempe et al. [11] show that the linear threshold model can also be represented via
live-arc graphs. Thus, while we focus on the independent cascade model our approach can also be used
for the linear threshold model after the transformation given in [11].

1.1 Previous work

In their seminal paper, Kempe et al. [11] show that for one particular scenario ω ∈ Ω the real-valued set
function Φω(S) is non-decreasing and submodular for all S ⊆ V . Let ρωi (S) := Φω(S∪{i})−Φω(S),∀S ⊂
V, i ∈ V , be the marginal gain achieved by adding element i to set S. According to the general result
in [18], a function Φω(S) is non-decreasing and submodular iff Φω(T ) ≤ Φω(S) +

∑
i∈T\S ρ

ω
i (S),∀S, T ⊆

V . Furthermore, if there is a cardinality constraint on S, e.g., |S| ≤ K (as in our case), a simple greedy
heuristic which starts with S = ∅ and iteratively adds node i /∈ S with maximal marginal gain gives an
1 − 1/e approximation algorithm [18]. As the objective function of the IMP is a convex combination
of submodular functions (which remains submodular), applying the generic greedy algorithm in [18] to
the IMP gives the same approximation ratio. The computation of the expected marginal gain for all
nodes can, however, be computationally time-consuming, especially for large graphs and a high number
of scenarios. Therefore, several acceleration techniques have been proposed to improve the running time
of the greedy algorithm, see, e.g., [15] for a survey on this topic.

The exact solution of the IMP received much less attention: Güney [9] uses a time-indexed mixed
integer linear programming (MILP) formulation for the IMP to model the propagation process in the
scenario-specific live-arc graphs. The same author proposes an approximation algorithm based on the
linear programming (LP) relaxation of a covering model for the IMP in [10]. In [22], a MILP formulation
is proposed which is based on the fact that maximizing a non-decreasing and submodular function can
be reformulated by using an exponentially-sized family of cutting planes, see [18]. To the best of our
knowledge, the approach in [22] is state-of-the-art for solving the IMP and thus will be compared with
our methods theoretically and in experiments.

1.2 Contribution and outline

In this work, we show how the IMP can be modeled as a stochastic maximal covering location problem
(SMCLP). The maximal covering location problem (MCLP) [4] is a classical problem from the area
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of location science. We present a compact model for the IMP and a reformulation based on Benders
decomposition. We also clarify the theoretical relation between the obtained Benders optimality cuts
and submodular cuts for sets of arbitrary size. Computational results show that we outperform the
state-of-the-art in many cases by orders of magnitude.

The remainder of the paper is organized as follows: Section 2 discusses the relation between influence
maximization and stochastic maximal covering location and proposes a cover formulation together with
a computationally appealing reformulation. Section 3 describes the algorithm to solve the reformulation
and Section 4 shows computational experiments. Finally, Section 5 concludes the paper.

2 Stochastic maximal covering location formulation

In this section, we will establish a close relation between the IMP and a stochastic variant of the maximal
covering location problem [4] which has also been observed in [10]. In contrast to the latter work, we not
only use this relation to derive an MILP formulation for the IMP but additionally exploit it to obtain a
reformulation leading to an effective Benders decomposition algorithm. For this, first observe that the
number of activated nodes Φω(S) for scenario ω ∈ Ω and seed set S ⊆ V corresponds exactly to the
number of nodes which are reachable in live-arc graph Gω from at least one of the nodes in S. Thus,
node i is activated in scenario ω iff set S includes a node from the reachability set R(ω, i) of all nodes
with a directed path to i in Gω. From a different perspective, node j covers node i in scenario ω ∈ Ω
if j ∈ R(ω, i). The latter point of view reveals the relation to a stochastic maximum covering location
problem that is formally shown in Theorem 1.

Theorem 1. The IMP is a special case of a maximal covering location problem with uncertain facility-
customer relations.

Proof. Given sets of facility sites J , demand nodes I with demands ai > 0, ∀i ∈ I, and facility sites
Ni ⊂ J that cover demand node i ∈ I, the MCLP [4] aims to maximize the demand covered by p ∈ N
facilities. Based on the discussion above, it is easy to observe, that the IMP corresponds to a two-stage
stochastic variant of the maximal covering location problem, in which the sets of facilities and demand
nodes are identical and correspond to V (i.e., I = J = V ) and all demand are equal to one (i.e., ai = 1,
∀i ∈ V ). Furthermore, a set of scenarios Ω, each with probability pω, ∀ω ∈ Ω, is given and the facility
sites Nω

i ⊆ V covering demand nodes i ∈ V in scenario ω ∈ Ω are defined by sets R(ω, i), i.e., some
facility j covers customer i iff j ∈ R(ω, i). The objective of this problem variant is to maximize the
expected demand covered while selecting exactly p = K facility locations.

For each scenario ω ∈ Ω and node i ∈ V , sets R(ω, i) can be easily determined by, e.g., a reverse
breadth-first search (BFS) starting from i in live-arc graph Gω. Thus, the result of Theorem 1 can
be used to see that formulation (1) is a valid model for the IMP as it is a comparably straightforward
scenario-based extension (for the special case described in the proof of Theorem 1) of a classical MILP
formulation for the MCLP [4]. Thereby, binary variable zi is equal to one iff node i ∈ V is part of the
seed set, and binary variable xωi is equal to one iff node i ∈ V is activated in scenario ω ∈ Ω.

max
∑
ω∈Ω

pω
∑
i∈V

xωi (1a)∑
i∈V

zi ≤ K (1b)

xωi ≤
∑

j∈R(ω,i)

zj ∀i ∈ V,∀ω ∈ Ω (1c)

xωi ∈ {0, 1} ∀i ∈ V,∀ω ∈ Ω (1d)

zi ∈ {0, 1} ∀i ∈ V (1e)

Objective function (1a) computes the expected number of activated nodes. The reachability con-
straint (1c) for node i and scenario ω guarantees that node i can only be active in scenario ω if at least
one of the nodes in R(ω, i) is chosen as seed node.
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2.1 Reformulation

Note that depending on the number of scenarios the set of variables xωi ,∀i ∈ V,∀ω ∈ Ω, and con-
straints (1c) might be quite large. To effectively solve also large instances, we will now introduce a
reformulation of (1) based on Benders decomposition, see, e.g., [5] for a similar approach in the case
of the MCLP. First observe, that for fixed integer z̄i ∈ {0, 1},∀i ∈ V , the integrality of variables xωi
can be relaxed. Moreover, the remaining problem decomposes into one subproblem for each scenario
ω ∈ Ω. These characteristics make the problem attractive for Benders decomposition. Let µω denote
the contribution of scenario ω ∈ Ω to the objective function. Then, we reformulate (1) in the following
way:

max
∑
ω∈Ω

pωµω (2a)∑
i∈V

zi ≤ K (2b)

µω ≤ Θω(z) ∀ω ∈ Ω (2c)

zi ∈ {0, 1} ∀i ∈ V. (2d)

Note that each seed set defined by variables zi,∀i ∈ V , which satisfies cardinality constraints (2b) leads
to a feasible solution. Thus, no Benders feasibility cuts are needed for the validity of reformulation (2).
Inequalities (2c) bound the objective by function Θω(z) which gives the maximal number of active nodes
in scenario ω ∈ Ω for any solution z ∈ [0, 1]|V |. Benders optimality cuts to model this function are derived
by considering the dual problem of the LP relaxation of (1) with optimal objective value Θω(z̄) for a
fixed vector z̄: Let αω

i ,∀i ∈ V,∀ω ∈ Ω, be the dual variables associated with upper bound constraints
xωi ≤ 1, and βω

i ,∀i ∈ V,∀ω ∈ Ω, be the dual variables associated with covering constraints (1c). Then,
for one particular scenario ω ∈ Ω the dual is

Θω(z̄) := min

∑
i∈V

αω
i + βω

i

∑
j∈R(ω,i)

z̄j

 : (αω,βω) ∈ Pω

 (3)

with
Pω := {(αω,βω) : αω + βω ≥ 1,αω,βω ≥ 0}. (4)

It is easy to see that there exists an optimal solution to (3) in which (αω
i , β

ω
i ) ∈ {(1, 0), (0, 1)} for each

i ∈ V , depending on the corresponding coefficients in the objective function. If
∑

j∈R(ω,i) z̄j < 1, then

βω
i = 1 (and αω

i = 0), otherwise, αω
i = 1 (and βω

i = 0). Thus, the dual can be solved by inspection for
each scenario ω ∈ Ω. Note that we always obtain an integer dual optimal solution, also for fractional
values of z̄.

We denote by Cω(z̄) :=
∑

i∈V α
ω
i the constant and by cωj (z̄) :=

∑
i:j∈R(ω,i) β

ω
i the coefficient of

variable zj ,∀j ∈ V , in Benders optimality cuts

µω ≤ Cω(z̄) +
∑
j∈V

cωj (z̄)zj . (5)

2.2 Relation to submodular cuts

The decomposition approach in [22] uses optimality cuts based on the submodularity and monotonicity
of function Φω, cf. section 1.1. Using the variables and notation given above, they are defined by

µω ≤ Φω(S) +
∑

j∈V \S

ρωj (S) zj , ∀S ⊆ V : |S| ≤ K,∀ω ∈ Ω. (6)

While only inequalities (6) for sets S of size exactly K are needed for correctness of the formulation,
those associated with sets S of smaller size can be computationally beneficial as observed in [17]. In
fact, the latter inequalities potentially strengthen the LP relaxation of the formulation including only
submodular cuts (6) for sets S of size exactly K, as shown in the following example: Consider graph

4



G with nodes V = {1, 2, 3, 4}, arcs A = {(1, 4), (2, 4), (3, 4)}, a maximal seed set size K = 2, and
influence probability pij = 1,∀(i, j) ∈ A, and a single scenario ω with Gω = G. An optimal integer
solution has objective value 3 and can be obtained by selecting any two of the three nodes 1, 2, 3. A
formulation including all submodular cuts for sets of size exactly K = 2 leads to an optimal LP solution
z̄1 = z̄2 = z̄3 = 2

3 , z̄4 = 0, with objective µ = 10
3 (bounded above by the six submodular cuts for all pairs

of nodes). Submodular cut (6) for the single node set S = {4} is defined as µ ≤ 1 + z1 + z2 + z3 and thus
is violated by the LP solution above. Adding the latter cut to the model results in an optimal integer
LP solution with value µ = 3.

Theorem 2. The Benders optimality cut (5) corresponding to a given (fractional) solution z̄ is equivalent
to the submodular cut (6) for set S := {i ∈ V :

∑
j∈R(ω,i) z̄j ≥ 1 ∧

∑
j∈R(ω,k) z̄j < 1,∀k ∈ R(ω, i) \ {i}}.

Proof. Note that different sets can lead to the same submodular cut, e.g., S′ := {i ∈ V :
∑

j∈R(ω,i) z̄j ≥
1} ⊇ S results in the same inequality as set S which, however, is a smallest one since it does not contain
nodes which are reachable from other nodes in S (due to the second term in the definition of S).

We show that Cω(z̄) = Φω(S) and cωj (z̄) = ρωj (S),∀j ∈ V . By definition of S,
∑

j∈R(ω,i) z̄j ≥ 1
holds for all nodes i ∈ V reachable from some node in seed set S. In this case, we set αω

i = 1 and
βω
i = 0. For all nodes i which cannot be activated by S,

∑
j∈R(ω,i) z̄j < 1 holds and thus, αω

i = 0 and

βω
i = 1. Therefore, Cω(z̄) =

∑
i∈V α

ω
i corresponds to the number of nodes activated by seed set S, i.e.,

Cω(z̄) = Φω(S). For one particular node j ∈ V , coefficient cωj (z̄) =
∑

i:j∈R(ω,i) β
ω
i denotes the number

of not yet active nodes which would be activated by node j if j is added to the seed set which corresponds
to the marginal gain of node j, i.e., cωj (z̄) = ρωj (S). Note that the marginal gain of nodes from S and all
other active nodes is zero.

Corollary 1. Benders optimality cuts associated to integer solutions z̄ and submodular cuts (6) for
correspondingly defined seed sets S := {i ∈ V : z̄i = 1} are equivalent.

Even though the two sets of inequalities are equivalent for integer solutions, compared to [22] our
modeling approach allows an efficient exact separation routine for fractional solutions which does not
rely on solving the LP relaxation. These Benders cuts based on fractional solutions turn out to improve
the computational results significantly, see Section 4.

Interestingly, set S obtained in Theorem 2 can potentially have any size, also larger than K, even for
solutions with

∑
i∈V z̄i = K. For the LP solution z̄1 = z̄2 = z̄3 = 2

3 , z̄4 = 0, in the example above, by
applying Theorem 2 we obtain S := {4} leading exactly to the submodular inequality mentioned above
which cuts off this LP solution. To summarize, the Benders cuts for fractional solutions potentially lead
to submodular cuts for sets of size different to K, which might not be generated otherwise since integral
solutions handed over by the MILP solver very likely will have size K.

3 Solution algorithm

To solve the IMP we use a branch-and-cut algorithm based on the Benders reformulation (2). In general
it is possible to start with a restricted master problem which does not include any of the Benders
cuts (2c). However, it turned out to be computationally advantageous to initially include some cuts to
bound variables µω from above, otherwise the first solution of the master problem would be unbounded.
Thus, we add the following inequalities which correspond to submodular cuts for S = ∅, i.e.,

µω ≤
∑
j∈V

Φω({j})zj , ∀ω ∈ Ω. (7)

In the remainder of this section we discuss issues related to the reachability sets for each node in each
scenario and the separation of Benders cuts (5) for integral and fractional solutions, respectively.

3.1 Determining reachability sets

Reachability sets R(ω, i) are essential for solving the Benders subproblem and obtaining violated Benders
cuts (5). In principle, the reachability sets R(ω, i) may be pre-computed and stored for all scenarios ω ∈ Ω
and nodes i ∈ V . The required memory ofO(|V |2|Ω|) may, however, become too large for real-world social
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networks with many nodes and when considering a high number of scenarios. Instead of pre-computing
and storing sets R(ω, i) one could alternatively determine them on-the-fly during the separation of
Benders cuts (5). The resulting runtime of O((|V |+ |E|)|V ||Ω|) per call of the separation routine might
be too time consuming. As a consequence we use an intermediate approach based on external parameter
MemLimPerScen which denotes the maximally allowed memory consumption per scenario. More precisely,
we pre-compute and store reachability sets for a subset of nodes V ω ⊆ V in each scenario ω ∈ Ω such
that the required memory does not exceed MemLimPerScen. Sets R(ω, i) for remaining nodes i ∈ V \ V ω

are determined on-the-fly during the cut separation.
For each scenario ω ∈ Ω and node i ∈ V , set R(ω, i) is determined using reverse BFS. If there is enough

memory available for the current scenario, R(ω, i) is stored for later use and the next node is considered.
Otherwise, the current set R(ω, i) is discarded and the algorithm continues with the next scenario. Two
further enhancements are considered in our implementation that help reducing the runtime. The first
one is based on the observation that a reverse BFS on Gω for some node i ∈ V may encounter a node
j ∈ V ω for which R(ω, j) has already been computed and stored. Since R(ω, j) ⊆ R(ω, i) in this case,
we add set R(ω, j) to the (partial) set R(ω, i) and do not further proceed the reverse BFS from any node
in R(ω, j). The second one is to immediately stop a reverse BFS iteration and discard the (partial) set
R(ω, i) if the memory limit is reached instead of first finishing the computation of this set.

To keep the overall approach as simple and fast as possible set V ω is determined by simply enu-
merating through the nodes i ∈ V in increasing order with respect to their index and computing and
storing the associated set R(ω, i) as long as the memory limit is not reached for the current scenario
ω ∈ Ω. In Section 4.5 we also test an alternative way of determining V ω which, however, leads to no
improvement.

3.2 Preprocessing

We propose and apply two preprocessing steps that aim to reduce the size of the model and the density
of Benders cuts (5), and as a consequence reduce solution times and memory consumption.

P1 The first step eliminates seed set variables z based on the observation that node i ∈ V is dominated
by node j ∈ V \ {i}, if j ∈ R(ω, i) in all scenarios ω ∈ Ω. In this case, it is better (or equivalent) to
include j in the seed set instead of i since all nodes reached by i can also be reached by j (in all scenarios).
Thus, variable zi can be eliminated from the model. If i and j dominate each other, we can eliminate
any of the two associated variables which also reduces symmetries in the solution space.

P2 Observe that the covering constraint (1c) is binding in any optimal solution if i ∈ V is a node with
no incident arcs in Aω in some scenario ω ∈ Ω, i.e., xωi = zi. Thus, we remove the covering constraint
and replace variable xωi by zi in the objective function for such nodes. As a consequence, variables αω

i

and βω
i do not exist in dual (3). Since node i does not appear in any set R(ω, j) for j 6= i, the coefficient

of variable zi in any Benders cut (5) for scenario ω is zero.

3.3 Separation of Benders cuts

algorithm 1 describes our separation routine of Benders cuts (5) when given a current solution (z̄, µ̄) to
the LP relaxation of (2). For each scenario ω ∈ Ω, we first determine the set Rω(S) of all nodes that
can be reached from set S = {i ∈ V : z̄i = 1}. We set (αω

i , β
ω
i ) = (1, 0), ∀i ∈ Rω(S), since there always

exists an optimal solution to (3) with these values, cf. section 2.1. Next, we evaluate
∑

j∈R(ω,i) z̄j for all

remaining nodes i ∈ V \Rω(S). If this sum is at least one, we set (αω
i , β

ω
i ) = (1, 0), and (αω

i , β
ω
i ) = (0, 1)

otherwise. Note that the second step is simplified if the current LP solution is integral, i.e., if z̄i ∈ {0, 1}
holds for all i ∈ V . In this case

∑
j∈R(ω,i) z̄j is equal to zero and thus (αω

i , β
ω
i ) = (0, 1) for all nodes

i ∈ V \Rω(S). Instead of storing the full solution to the dual of (2), algorithm 1 uses Cω and cωj , ∀j ∈ V ,
to keep track of

∑
i∈V α

ω
i and

∑
i:j∈R(ω,i) β

ω
i , respectively. Finally, we stop the reverse BFS for node

j ∈ V \Rω(S) as soon as the sum of relevant z-values reaches one (further increasing this sum does not
change the overall result). For the sake of readability, these improvements are omitted in algorithm 1.
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Algorithm 1 separate

Require: live-arc graphs Gω = (V,Aω), V ω,∀ω ∈ Ω, solution (z̄, µ̄)
Ensure: set C of Benders cuts (5) violated by (z̄, µ̄)
S = {i ∈ V : z̄i = 1}
C = ∅
for ω ∈ Ω do

obtain active node set Rω(S) in Gω

Cω = |Rω(S)|
cωj = 0,∀j ∈ V
for i 6∈ Rω(S) do

if
∑

j∈R(ω,i) z̄j ≥ 1 then
Cω = Cω + 1

else
cωj = cωj + 1,∀j ∈ R(ω, i)

end if
end for
if µ̄ω > Cω +

∑
j∈V c

ω
j z̄j then

C = C ∪ {µω ≤ Cω +
∑

j∈V c
ω
j zj}

end if
end for
return C

Table 1: Real-world social networks

Instance |V | |A| Description

MSG 1 899 59 835 messaging network of users at UC-Irvine [19]
GNU 10 879 79 988 snapshot 04 of Gnutella filesharing network [20]
HEP 37 154 463 168 high energy physics paper citation network [3]
ENRON 36 692 367 662 e-mail communication network from Enron [14]

4 Computational experiments

Each experiment has been performed on a single core of an Intel Xeon E5-2670v2 machine with 2.5 GHz.
The algorithms are implemented in C++ and IBM ILOG CPLEX 12.7 with default settings is used as
branch-and-cut framework and LP solver. A time limit of 3 600 seconds and, unless otherwise stated, a
memory limit of 30 GB has been set for each test run with parameter MemLimPerScen set to 8/|Ω| GB.

4.1 Instances

We test our solution algorithms on the four real-world social networks used in [22], see table 1, and
process them in the same way to allow a fair comparison: In case the instance graph is undirected, we
add two directed arcs (i, j) and (j, i) for each undirected edge {i, j}. Each arc (i, j) ∈ A is assigned the
same influence probability pij = 0.1. Some instances, e.g., MSG, include multiple parallel arcs for some
(i, j) ∈ A which are handled in the following way: When generating a simple live-arc graph Gω for some
scenario ω ∈ Ω, for each appearance of (i, j) ∈ A we decide with probability pij whether that arc is part
of Aω or not. Alternatively, we may compute a combined probability meaning that at least one of the
arcs (i, j) ∈ A appears in Gω, i.e., p′ij = 1− (1− pij)nij , where nij corresponds to the number of parallel

arcs (i, j) ∈ A. Instances MSG, GNU, and ENRON are available for download from the SNAP database1,
while instance HEP can be obtained from the website of one of the authors of [3]2.

Moreover, we generated a set SW of five directed small-world graphs [21] with 1000 nodes and rewiring
probability 0.3 for each average node out-degree δ+ ∈ {8, 16}. Influence probabilities pij for arcs (i, j) ∈

1https://snap.stanford.edu/data/, accessed on 2018-10-18
2https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/weic-graphdata.zip, accessed on 2018-

10-18
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A are either set to a common value in {0.01, 0.05, 0.1} (similar as above) or are β-distributed with
parameters (2, 18) (mean value 0.1).

4.2 Algorithmic variants and settings

Based on the branch-and-cut algorithm described in Section 3 we compare three variants differing in the
Benders cut separation:

• BEN: In this setting, we separate cuts only for integer solutions.

• BENFR: BEN with additional separation of fractional solutions but only in the root node of the
branch-and-bound tree.

• BENF: BENFR with separation of fractional solutions in all branch-and-bound nodes.

In all settings we initially add submodular cuts (7) for empty sets. In both BENFR and BENF, we stop
separation of fractional cuts in some branch-and-bound node as soon as the absolute decrease of the dual
bound compared to the previous iteration falls below 0.001.

4.3 Comparison with state-of-the-art

In this section, we compare our solution algorithm with the delayed row-generation approach based
on submodular cuts (6) in [22] which to the best of our knowledge is state-of-the-art for solving the
IMP. The authors in [22] iteratively solve their formulation with a subset of submodular cuts to integer
optimality, identify and add violated submodular cuts, and update bounds until the global optimality
gap is closed. Note, however, that a 1% optimality gap threshold is set for solving the (incomplete)
formulation in each iteration. This potentially leads to suboptimal solutions in the end also in cases
where the global optimality gap (outer loop) is closed completely. For comparison reasons, we re-
implemented their approach to perform tests in which we solve in each iteration the formulation to
optimality. Furthermore, the authors in [22] argue that adding submodular cuts (7) for empty sets a
priori to the model does not help to (significantly) improve the running time of their approach or reduce
the number of generated cuts. This might be explained by the fact that a formulation without any
submodular cuts will most probably lead to an optimal solution z̄ = 0. Thus, the separation in the first
iteration will identify and add exactly the submodular cuts (7) for empty sets. Preliminary test showed
that both variants proceed quite similarly (within the variability of modern MILP solvers). To avoid
this initial iteration we instead immediately add cuts (7). We denote the approach from [22] by WK in
the following comparison. Tests are performed with the same settings as in [22], i.e., K ∈ {2, 3, 4, 5}
and |Ω| ∈ {100, 200, 300, 500}. Figure 1a and fig. 1b give performance profiles comparing the running
time of our algorithms with WK for 1% and 0% optimality gap threshold, respectively. Note that for
our algorithms optimality gap thresholds > 0 apply to the single branch-and-cut execution. As can be
clearly seen in the figures, it seems to be beneficial to integrate the generation of Benders cuts within
a cutting plane approach in a single branch-and-cut iteration. Our variant BEN only separating integer
solutions performs best here, immediately followed by BENFR adding fractional Benders cuts only in the
root node, both outperforming algorithm WK by at least one order of magnitude. Detailed results can be
found in the Appendix in table 4 and table 5. These instances where the target set size K is relatively
small and the influence probability is set to a high value of p = 0.1 for all arcs turned out to be quite easy
to solve. Because of the high influence probability the live-arc graphs usually contain a giant (weakly)
connected component which is also very similar among the scenarios and several quite small or even
singleton components. Thus, with a small target set size K ≤ 5 finding an optimal solution is not too
difficult: It seems sufficient to select a promising target node in the giant component to activate most
of the other nodes of the giant component and distribute the few residual target nodes to the smaller
components improving the objective only slightly.

4.4 Extensive performance comparison

Due to the observations in the last section, we increase the difficulty of the real-world instances by
considering also smaller influence probabilities p ∈ {0.01, 0.05, 0.1} (in one particular instance all arcs
still have the same probability) and higher target set sizes K ∈ {2, 5, 10, 15, 25}. The number of scenarios
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Figure 1: Performance profiles of solution runtimes with stopping criterion of 1% and 0% optimality gap,
respectively, for the real-world instances tested in [22].

is set to |Ω| ∈ {250, 500, 750}. Smallworld graphs SW are tested only for K ∈ {10, 15, 25} but for the same
set of influence probabilities with the additional case of β-distributed values to also deal with the (more
realistic) situation of varying arc probabilities. Figure 2 and fig. 3 show performance profiles of solution
runtimes and optimality gaps grouped by target size K while fig. 4 and fig. 5 show profiles grouped by
influence probability p. Detailed results can be found in the appendix in table 6 to table 11.

We immediately observe that enlarging the target set size increases the solution runtime and also the
remaining optimality gap in case the time limit is reached. This result is in line with the discussion in
the last section and is also quite intuitive since a larger target set size implies a larger set of feasible
solutions. With respect to our algorithmic variants, it turns out that when K increases separating
fractional solutions gets more and more important, i.e., the performance of BENF/BENFR significantly
improves compared to BEN. This behavior can be explained by the fact that the dual bound obtained
from the LP relaxation of (2) deteriorates when K increases. This can be clearly observed in the numbers
of needed branch-and-bound nodes.

When relating different influence probabilities, interestingly the intermediate case of p = 0.05 is more
difficult than the other two cases. Mostly, value p = 0.1 results in one giant and several very small or
singleton components in each scenario (as discussed above) while p = 0.01 leads to extremely sparse
live-arc graphs containing a large number of singleton components. Both extreme cases are therefore
not difficult to solve whereas intermediate values generate many components of different sizes that also
differ a lot more between scenarios. This can especially be observed in the extremely large remaining
optimality gaps of up to 20% for the SW instances with average degree 16, see table 11. The SW instances
with β-distributed probabilities show quite similar results to the p = 0.1 case which can be explained by
the fact that the mean value of the chosen distribution corresponds exactly to 0.1.

Increasing the number of scenarios clearly leads to a better approximation of the IMP but also to a
much higher time and memory consumption. To summarize, among our algorithmic variants BENF seems
to be the most promising one, especially for the SW instances, while BENFR with its more conservative
and parsimonious separation strategy seems to be better suited for the real-world instances. Common
to both winners, our efficient separation of fractional solutions seems to pay off significantly.

4.5 Influence of (partially) storing reachability sets

As discussed in Section 3.1, reachability sets for each node and each scenario (if stored completely)
potentially consume a large amount of memory. In this section we evaluate our strategy of partially
storing the reachability sets for (tight) memory limits. With the default setting of reserving 8 GB for all
reachability sets for an instance we observe that for most considered real-world and small-world instances
and numbers of scenarios the limit is not reached and thus all sets could be stored. Table 2 and table 3
show next to preprocessing results (see Section 4.6) also a column named “stored” with the relative
average amounts of stored reachability sets (over all scenarios). Only for the largest instance ENRON and
higher influence probabilities (leading to denser live-arc graphs and potentially larger reachability sets)
not all sets can be stored, in some cases even below ten percent.

Therefore, we perform additional tests on instance ENRON to compare the solution runtimes of al-
gorithm BENF for different amounts of memory reserved for reachability sets controlled via parameter
MemLimPerScen: (i) BENF0 with MemLimPerScen = 0 (no sets are stored and thus repeatedly deter-
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mined on-the-fly), (ii) BENF with MemLimPerScen = 8/|Ω| (default setting as described above), and (iii)
BENF30 with MemLimPerScen = 30/|Ω| (30 GB are sufficient to store all sets for this instance). The
natural question arises which of the reachability sets should be stored and which should be determined
on-the-fly in each scenario in case of tight memory limits. In setting BENF for each scenario we iterate
through the set of nodes ordered by increasing node index and store the associated reachability sets until
MemLimPerScen is reached. To see whether the ordering has an influence on the solution runtime, we
alternatively consider setting BENFS sorting the nodes by non-increasing out-degree, thus favoring the
storage of potentially large reachability sets. Figure 6 shows performance profiles comparing all four
variants. It is easy to see that storing no sets (BENF0) leads to significantly higher solution runtimes
even though determining the sets on-the-fly can be done quite efficiently in linear time. Furthermore,
reserving huge amounts of memory to store all sets (BENF30) and selecting the sets to store based on
some more sophisticated criterion (BENFS), respectively, show no significant benefits compared with our
default strategy of partially storing the sets based on index ordering (BENF).

4.6 Preprocessing results

In this section we briefly discuss the influence of preprocessing on our sets of test instances. Table 2
and table 3 show the average numbers of eliminated node variables over all scenarios for real-world and
SW instances, respectively.

The requirements for an elimination of a seed set variable (P1) are by definition quite hard to fulfill
since the according dominance rule has to hold in all scenarios, i.e., the more scenarios the smaller the
chance for an elimination. Also, higher graph density is favorable for this preprocessing step which is
clearly visible for instance MSG in table 2 in which already the base graph is much denser than in all
other considered instances. Increasing influence probabilities lead to a higher elimination rate but we do
not observe values above 16%. For the other real-world and especially the SW instances the influence of
P1 is negligible.

On the contrary, the conditions for preprocessing P2 are easier to satisfy, i.e., if a node is not connected
in one particular scenario the corresponding activation variable can be eliminated within this scenario.
For P2, sparse base graphs and small influence probabilities are beneficial increasing the probability of
singleton components up to 80% in our instances. Additionally, the nature of P2 makes the elimination
rate independent of the number of considered scenarios.

5 Conclusions

In this work we solve the influence maximization problem based on the independent cascade model by
transforming it to a maximal covering location problem with uncertain facility-customer relations. A
Benders reformulation of a compact covering formulation leads to a branch-and-cut approach which
outperforms the state-of-the-art algorithm (exploiting submodularity) by orders of magnitude in terms
of solution runtime and allows to solve much more difficult instances. In particular, two preprocessing
steps together with an efficient separation of fractional Benders cuts significantly decrease the solution
runtime. To deal with time and memory issues related to large graphs and a high number of scenarios we
apply several algorithmic techniques based on incremental calculation and partial storage of reachability
sets.
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Table 2: Preprocessing results for real-world instances with relative amounts of stored reachability sets
(“stored”), eliminated seed set variables (P1), and eliminated activation variables (P2), averaged over
all scenarios.

name |V | |A| |Ω| p stored P1 P2

MSG 1899 59835 250 0.01 1.00 0.01 0.63
0.05 1.00 0.08 0.45
0.10 1.00 0.16 0.36

500 0.01 1.00 0.00 0.63
0.05 1.00 0.08 0.45
0.10 1.00 0.15 0.35

750 0.01 1.00 0.00 0.63
0.05 1.00 0.07 0.45
0.10 1.00 0.14 0.35

GNU 10879 79988 250 0.01 1.00 0.00 0.77
0.05 1.00 0.00 0.52
0.10 1.00 0.00 0.37

500 0.01 1.00 0.00 0.77
0.05 1.00 0.00 0.52
0.10 1.00 0.00 0.37

750 0.01 1.00 0.00 0.77
0.05 1.00 0.00 0.52
0.10 0.70 0.00 0.37

HEP 15233 117782 250 0.01 1.00 0.00 0.79
0.05 1.00 0.00 0.59
0.10 1.00 0.01 0.43

500 0.01 1.00 0.00 0.79
0.05 1.00 0.00 0.59
0.10 1.00 0.01 0.43

750 0.01 1.00 0.00 0.79
0.05 1.00 0.00 0.59
0.10 0.97 0.01 0.43

ENRON 36692 367662 250 0.01 1.00 0.00 0.80
0.05 0.14 0.01 0.61
0.10 0.07 0.03 0.46

500 0.01 1.00 0.00 0.80
0.05 0.06 0.01 0.61
0.10 0.04 0.03 0.46

750 0.01 1.00 0.00 0.80
0.05 0.04 0.01 0.61
0.10 0.03 0.02 0.46
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Figure 2: Performance profiles of solution runtimes and optimality gaps on the real-world instances,
grouped by target set size K
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(f) optimality gap, K = 25

Figure 3: Performance profiles of solution runtimes and optimality gaps on the SW instances, grouped by
target set size K
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(f) optimality gap, p = 0.10

Figure 4: Performance profiles of solution runtimes and optimality gaps on the real-world instances,
grouped by p
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Figure 5: Performance profiles of solution runtimes and optimality gaps on the SW instances, grouped by
influence probability p
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Figure 6: Performance profiles of solution runtimes for different settings of MemLimPerScen and sorting
strategies.

Table 3: Preprocessing results for SW instances with relative amounts of stored reachability sets
(“stored”), eliminated seed set variables (P1), and eliminated activation variables (P2), averaged over
all scenarios.

avg. δ+ |V | |A| |Ω| p stored P1 P2

8 1000 8000 250 0.01 1.00 0.00 0.72
0.05 1.00 0.00 0.37
0.10 1.00 0.00 0.16
β 1.00 0.00 0.16

500 0.01 1.00 0.00 0.72
0.05 1.00 0.00 0.37
0.10 1.00 0.00 0.16
β 1.00 0.00 0.16

750 0.01 1.00 0.00 0.72
0.05 1.00 0.00 0.37
0.10 1.00 0.00 0.16
β 1.00 0.00 0.16

16 1000 16000 250 0.01 1.00 0.00 0.52
0.05 1.00 0.00 0.14
0.10 1.00 0.00 0.02
β 1.00 0.00 0.02

500 0.01 1.00 0.00 0.52
0.05 1.00 0.00 0.14
0.10 1.00 0.00 0.02
β 1.00 0.00 0.02

750 0.01 1.00 0.00 0.52
0.05 1.00 0.00 0.14
0.10 1.00 0.00 0.02
β 1.00 0.00 0.02
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Table 4: Comparison of solution times in seconds and numbers of added Benders and submodular
cuts, respectively, of our approaches and state-of-the-art algorithm WK with a stopping criterion of 1%
optimality gap. TL denotes “time limit reached”.

BEN BENF BENFR WK
name K |Ω| t[s] #C t[s] #C t[s] #C t[s] #C

MSG 2 100 2 199 2 199 2 199 8 200
200 3 400 3 400 3 400 21 400
300 4 600 4 600 4 600 21 600
500 6 1000 6 1000 6 1000 37 1000

3 100 2 201 2 201 2 201 15 208
200 3 400 3 400 3 400 20 400
300 4 600 4 600 4 600 22 600
500 6 1000 8 1000 6 1000 39 1000

4 100 2 202 2 202 2 202 11 200
200 3 400 3 400 3 400 14 400
300 4 608 4 608 4 608 22 600
500 7 1022 7 1022 7 1022 36 1000

5 100 2 236 2 236 2 236 7 200
200 3 400 3 400 3 400 14 400
300 5 1548 5 620 5 620 22 600
500 6 1039 6 1039 6 1039 36 1000

ENRON 2 100 72 200 74 200 73 200 1387 200
200 130 400 131 400 132 400 2757 400
300 196 600 196 600 195 600 TL 600
500 314 1000 314 1000 314 1000 TL 1000

3 100 70 200 72 200 71 200 1374 200
200 132 400 131 400 131 400 2833 400
300 188 600 188 600 189 600 TL 600
500 319 1000 316 1000 311 1000 TL 1000

4 100 76 200 77 200 75 200 1412 200
200 139 400 142 400 139 400 2812 400
300 213 600 212 600 211 600 TL 600
500 365 1000 362 1000 355 1000 TL 1000

5 100 77 226 76 226 78 226 1422 200
200 144 411 142 411 145 411 2870 400
300 219 600 217 600 220 600 TL 600
500 362 1000 362 1000 362 1000 TL 1000

GNU 2 100 8 200 8 200 8 200 77 200
200 15 400 15 400 15 400 149 400
300 24 600 24 600 24 600 223 600
500 39 1000 39 1000 40 1000 375 1000

3 100 8 200 8 200 8 200 73 200
200 15 400 16 400 16 400 148 400
300 23 600 23 600 23 600 225 600
500 41 1000 40 1000 41 1000 380 1000

4 100 8 200 8 200 8 200 74 200
200 15 400 16 400 15 400 149 400
300 23 600 23 600 23 600 223 600
500 38 1000 38 1000 39 1000 384 1000

5 100 9 206 9 206 9 206 84 200
200 20 401 19 415 19 415 161 400
300 31 600 31 636 30 636 247 600
500 52 1000 54 1052 54 1052 416 1000

HEP 2 100 7 200 8 200 8 200 112 200
200 14 400 17 400 15 400 218 400
300 23 600 23 600 24 600 326 600
500 39 1000 38 1000 39 1000 553 1000

3 100 9 279 10 282 10 282 179 279
200 16 595 16 595 16 595 379 595
300 23 893 23 893 23 893 580 893
500 43 1491 43 1491 42 1491 985 1491

4 100 9 279 8 279 8 279 181 279
200 20 595 20 595 20 595 414 595
300 31 893 33 893 33 893 600 893
500 44 1491 44 1491 44 1491 1008 1491

5 100 13 320 19 570 20 570 241 322
200 26 803 40 1135 42 1135 676 793
300 40 1198 64 1711 62 1711 1067 1187
500 65 1972 98 2835 101 2835 1753 1996
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Table 5: Comparison of solution times in seconds and numbers of added Benders and submodular
cuts, respectively, of our approaches and state-of-the-art algorithm WK with a stopping criterion of 0%
optimality gap. TL denotes “time limit reached”.

BEN BENF BENFR WK
name K |Ω| t[s] #C t[s] #C t[s] #C t[s] #C

MSG 2 100 2 211 2 213 2 213 8 200
200 4 882 4 755 4 755 14 400
300 5 1398 5 960 5 960 22 600
500 9 1823 8 1334 8 1334 36 1000

3 100 2 482 2 391 2 391 11 208
200 6 2111 3 878 4 878 334 3044
300 8 3053 5 1034 5 1034 28 632
500 12 3602 8 1705 8 1705 2006 7975

4 100 2 352 2 283 2 283 TL 6830
200 8 3425 3 957 3 957 TL 6249
300 4 1333 4 889 4 889 TL 9745
500 19 6741 9 2523 9 2523 TL 9969

5 100 2 666 2 398 2 398 TL 7709
200 10 4340 4 1192 4 1192 TL 5855
300 18 6087 6 663 5 663 TL 9852
500 16 5705 8 2454 8 2454 TL 9940

ENRON 2 100 80 207 172 208 174 208 1459 207
200 146 407 375 407 366 407 2826 400
300 221 605 TL 605 743 605 TL 600
500 340 1004 1820 1004 1204 1004 TL 1000

3 100 77 223 216 214 212 214 1691 223
200 143 416 1633 426 544 421 3102 416
300 207 617 TL 683 709 614 TL 600
500 360 1011 2645 1026 1215 1011 TL 1000

4 100 84 227 177 225 139 223 1837 233
200 146 416 379 449 401 449 3056 408
300 267 700 TL 732 749 678 TL 600
500 462 1171 TL 1114 1520 1102 TL 1000

5 100 82 239 91 252 91 252 2177 271
200 150 411 144 411 143 411 2958 416
300 234 695 1231 738 693 694 TL 600
500 380 1166 1711 1170 1281 1170 TL 1000

GNU 2 100 29 203 318 204 25 204 113 203
200 94 405 1310 403 95 403 505 404
300 250 616 2841 614 228 614 2784 614
500 2963 1013 TL 1023 1394 1023 TL 1000

3 100 24 223 91 258 16 217 111 216
200 338 431 TL 974 193 417 855 423
300 3092 641 TL 885 2329 620 TL 600
500 TL 1079 TL 1442 TL 1034 TL 1000

4 100 12 216 16 228 14 226 100 209
200 37 448 664 803 50 442 220 426
300 444 710 TL 1636 175 659 1193 663
500 TL 1175 TL 3326 TL 1107 TL 1000

5 100 11 227 14 228 13 228 211 267
200 33 517 49 480 31 440 367 546
300 142 782 423 1211 59 686 484 706
500 1753 1362 TL 2927 698 1175 TL 1260

HEP 2 100 8 200 8 200 8 200 116 200
200 16 400 14 400 15 400 217 400
300 23 600 23 600 23 600 334 600
500 40 1000 39 1000 40 1000 561 1000

3 100 12 279 10 282 10 282 184 279
200 18 595 16 595 16 595 383 595
300 23 893 26 893 23 893 587 893
500 44 1491 44 1491 41 1491 1005 1491

4 100 16 375 15 495 15 495 337 371
200 29 713 30 919 29 919 887 711
300 47 1048 49 1395 49 1395 845 1033
500 90 1746 82 2287 79 2287 1567 1736

5 100 21 347 21 570 19 570 324 347
200 32 806 41 1135 41 1135 1139 814
300 55 1220 65 1711 64 1711 1472 1215
500 77 1992 101 2835 103 2835 2132 1992
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Table 6: Detailed results for instance MSG listing solution times in seconds (t[s]), remaining optimality
gaps in % (g[%]), primal gaps to the best known solution (p[%]), numbers of added Benders cuts (#C),
and numbers of branch-and-bound nodes (#B). TL denotes “time limit reached”.

BEN BENF BENFR
K |Ω| p t[s] g[%] p[%] #C #B t[s] g[%] p[%] #C #B t[s] g[%] p[%] #C #B

2 250 0.01 2 0.00 0.00 577 7 2 0.00 0.00 569 0 2 0.00 0.00 569 0
0.05 3 0.00 0.00 923 68 3 0.00 0.00 883 0 3 0.00 0.00 883 0
0.10 4 0.00 0.00 1271 44 4 0.00 0.00 938 0 4 0.00 0.00 938 0

500 0.01 3 0.00 0.00 1237 6 3 0.00 0.00 1145 0 3 0.00 0.00 1145 0
0.05 7 0.00 0.00 1787 88 6 0.00 0.00 1648 0 6 0.00 0.00 1648 0
0.10 9 0.00 0.00 1823 13 8 0.00 0.00 1334 0 8 0.00 0.00 1334 0

750 0.01 7 0.00 0.00 1831 12 5 0.00 0.00 1897 3 6 0.00 0.00 1840 6
0.05 12 0.00 0.00 2495 19 9 0.00 0.00 2579 0 9 0.00 0.00 2579 0
0.10 13 0.00 0.00 1892 20 12 0.00 0.00 1977 0 12 0.00 0.00 1977 0

5 250 0.01 2 0.00 0.00 733 11 2 0.00 0.00 832 3 2 0.00 0.00 832 3
0.05 7 0.00 0.00 2042 305 3 0.00 0.00 974 0 3 0.00 0.00 974 0
0.10 8 0.00 0.00 2711 266 5 0.00 0.00 537 3 4 0.00 0.00 537 3

500 0.01 3 0.00 0.00 1532 43 3 0.00 0.00 1582 3 3 0.00 0.00 1552 7
0.05 15 0.00 0.00 4285 224 7 0.00 0.00 2269 0 7 0.00 0.00 2269 0
0.10 16 0.00 0.00 5705 344 8 0.00 0.00 2454 0 8 0.00 0.00 2454 0

750 0.01 5 0.00 0.00 2376 23 5 0.00 0.00 2283 3 5 0.00 0.00 2283 3
0.05 42 0.00 0.00 8265 439 10 0.00 0.00 3321 0 10 0.00 0.00 3321 0
0.10 53 0.00 0.00 12684 533 12 0.00 0.00 3785 0 12 0.00 0.00 3785 0

10 250 0.01 4 0.00 0.00 1471 238 2 0.00 0.00 1194 3 2 0.00 0.00 1194 3
0.05 10 0.00 0.00 2196 321 4 0.00 0.00 1279 0 4 0.00 0.00 1279 0
0.10 2352 0.00 0.00 12917 39112 4 0.00 0.00 1476 0 4 0.00 0.00 1476 0

500 0.01 6 0.00 0.00 2633 157 5 0.00 0.00 2633 3 5 0.00 0.00 2633 3
0.05 21 0.00 0.00 5000 322 7 0.00 0.00 2912 0 9 0.00 0.00 2912 0
0.10 1080 0.00 0.00 23515 7861 8 0.00 0.00 3107 0 8 0.00 0.00 3107 0

750 0.01 9 0.00 0.00 4164 132 6 0.00 0.00 3345 3 6 0.00 0.00 3345 3
0.05 44 0.00 0.00 8747 365 10 0.00 0.00 3447 0 10 0.00 0.00 3447 0
0.10 TL 0.01 0.00 37495 12665 14 0.00 0.00 5856 0 14 0.00 0.00 5856 0

15 250 0.01 23 0.00 0.00 2682 962 3 0.00 0.00 1806 3 3 0.00 0.00 1804 14
0.05 26 0.00 0.00 4036 631 4 0.00 0.00 2165 3 4 0.00 0.00 2165 3
0.10 3266 0.00 0.00 12510 50517 5 0.00 0.00 1712 0 4 0.00 0.00 1712 0

500 0.01 52 0.00 0.00 6542 700 6 0.00 0.00 3691 3 7 0.00 0.00 3744 17
0.05 29 0.00 0.00 4761 623 6 0.00 0.00 2571 0 6 0.00 0.00 2571 0
0.10 TL 0.02 0.00 31250 14825 10 0.00 0.00 4390 0 10 0.00 0.00 4390 0

750 0.01 67 0.00 0.00 8778 657 9 0.00 0.00 4890 3 8 0.00 0.00 4890 3
0.05 85 0.00 0.00 10051 769 11 0.00 0.00 4273 0 10 0.00 0.00 4273 0
0.10 TL 0.02 0.00 40805 9806 15 0.00 0.00 6842 0 15 0.00 0.00 6842 0

25 250 0.01 TL 0.20 0.03 37334 12038 5 0.00 0.00 3038 5 10 0.00 0.00 2965 254
0.05 45 0.00 0.00 5143 1239 4 0.00 0.00 1885 3 4 0.00 0.00 1885 3
0.10 2284 0.00 0.00 9972 56266 5 0.00 0.00 2920 3 8 0.00 0.00 2926 119

500 0.01 TL 0.27 0.03 49217 4147 10 0.00 0.00 5946 3 143 0.00 0.00 7221 3515
0.05 123 0.00 0.00 7061 2289 8 0.00 0.00 3171 3 8 0.00 0.00 3172 9
0.10 TL 0.01 0.00 22425 20626 9 0.00 0.00 5009 0 9 0.00 0.00 5009 0

750 0.01 TL 0.26 0.03 73208 4253 14 0.00 0.00 8775 3 192 0.00 0.00 10001 2179
0.05 525 0.00 0.00 23548 2429 13 0.00 0.00 6568 3 24 0.00 0.00 6111 140
0.10 TL 0.02 0.00 34562 11786 14 0.00 0.00 7163 0 14 0.00 0.00 7163 0
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Table 7: Detailed results for instance HEP listing solution times in seconds (t[s]), remaining optimality
gaps in % (g[%]), primal gaps to the best known solution (p[%]), numbers of added Benders cuts (#C),
and numbers of branch-and-bound nodes (#B). TL denotes “time limit reached”.

BEN BENF BENFR
K |Ω| p t[s] g[%] p[%] #C #B t[s] g[%] p[%] #C #B t[s] g[%] p[%] #C #B

2 250 0.01 8 0.00 0.00 501 8 8 0.00 0.00 671 0 8 0.00 0.00 671 0
0.05 10 0.00 0.00 500 0 10 0.00 0.00 500 0 10 0.00 0.00 500 0
0.10 19 0.00 0.00 500 0 20 0.00 0.00 500 0 19 0.00 0.00 500 0

500 0.01 15 0.00 0.00 1004 0 15 0.00 0.00 1323 0 15 0.00 0.00 1323 0
0.05 22 0.00 0.00 1000 0 20 0.00 0.00 1000 0 20 0.00 0.00 1000 0
0.10 41 0.00 0.00 1000 0 40 0.00 0.00 1000 0 41 0.00 0.00 1000 0

750 0.01 25 0.00 0.00 1973 0 22 0.00 0.00 1973 0 22 0.00 0.00 1973 0
0.05 32 0.00 0.00 1500 0 30 0.00 0.00 1500 0 29 0.00 0.00 1500 0
0.10 56 0.00 0.00 1500 0 57 0.00 0.00 1500 0 56 0.00 0.00 1500 0

5 250 0.01 16 0.00 0.00 1117 171 14 0.00 0.00 1180 0 14 0.00 0.00 1180 0
0.05 78 0.00 0.00 999 1301 170 0.00 0.00 1667 261 50 0.00 0.00 1316 384
0.10 41 0.00 0.00 1014 169 46 0.00 0.00 1430 0 43 0.00 0.00 1430 0

500 0.01 34 0.00 0.00 2085 344 28 0.00 0.00 2392 3 27 0.00 0.00 2392 3
0.05 154 0.00 0.00 1956 745 220 0.00 0.00 3016 115 94 0.00 0.00 2523 145
0.10 78 0.00 0.00 1992 53 103 0.00 0.00 2835 0 100 0.00 0.00 2835 0

750 0.01 58 0.00 0.00 3975 388 43 0.00 0.00 3871 3 42 0.00 0.00 3746 5
0.05 183 0.00 0.00 2934 366 853 0.00 0.00 6169 323 235 0.00 0.00 3911 175
0.10 338 0.00 0.00 3566 93 168 0.00 0.00 4760 6 162 0.00 0.00 4753 8

10 250 0.01 TL 5.00 1.15 14657 6600 27 0.00 0.00 2415 3 27 0.00 0.00 2415 3
0.05 882 0.00 0.00 1951 17213 1551 0.00 0.00 4753 2313 266 0.00 0.00 2447 2356
0.10 397 0.00 0.00 1862 2234 77 0.00 0.00 1997 0 76 0.00 0.00 1997 0

500 0.01 TL 5.72 1.10 24149 3583 62 0.00 0.00 4857 3 66 0.00 0.00 4682 7
0.05 TL 0.22 0.04 3765 23104 TL 0.23 0.08 9819 1102 2182 0.00 0.00 5065 10790
0.10 TL 0.02 0.01 4600 12792 203 0.00 0.00 3546 23 159 0.00 0.00 3541 24

750 0.01 TL 7.32 1.98 28185 2053 115 0.00 0.00 7734 7 113 0.00 0.00 7179 21
0.05 TL 0.20 0.02 4727 11584 TL 0.26 0.06 11821 1306 1949 0.00 0.00 7532 7366
0.10 TL 0.03 0.00 7027 2400 296 0.00 0.00 5959 21 245 0.00 0.00 5959 21

15 250 0.01 TL 11.69 2.01 16664 2800 290 0.00 0.00 10626 170 919 0.00 0.00 4976 11782
0.05 TL 0.19 0.01 3233 15700 384 0.00 0.00 4434 415 201 0.00 0.00 3276 1012
0.10 TL 0.18 0.04 3558 9472 158 0.00 0.00 3760 2 154 0.00 0.00 3760 2

500 0.01 TL 13.03 2.77 20195 2300 621 0.00 0.00 17789 178 2808 0.00 0.00 8860 14506
0.05 TL 1.36 0.11 8798 3602 TL 0.09 0.00 12014 1917 1119 0.00 0.00 6199 4536
0.10 TL 3.68 0.14 7204 1635 1341 0.00 0.00 6400 146 1123 0.00 0.00 6041 345

750 0.01 TL 13.06 2.25 27208 1493 1582 0.00 0.00 31945 209 TL 0.63 0.10 22459 8240
0.05 TL 1.36 0.00 9633 2500 TL 0.20 0.04 14743 551 TL 0.05 0.00 9354 3571
0.10 TL 1.70 0.09 7393 1242 2901 0.00 0.00 9210 334 1512 0.00 0.00 8964 377

25 250 0.01 TL 17.59 3.98 14458 2565 2288 0.00 0.00 26086 380 TL 0.32 0.04 7271 19741
0.05 TL 2.41 0.40 13726 1700 1024 0.00 0.00 7334 796 1837 0.00 0.00 5173 10245
0.10 TL 5.73 0.56 9910 1713 411 0.00 0.00 4769 51 401 0.00 0.00 4607 261

500 0.01 TL 18.02 4.03 24625 1325 TL 0.43 0.00 41751 199 TL 0.88 0.25 17098 5577
0.05 TL 25.12 0.53 16051 1060 TL 0.23 0.00 18464 344 TL 0.22 0.00 10676 2666
0.10 TL 8.83 0.26 9813 815 2919 0.00 0.00 9696 452 TL 0.02 0.01 8867 1800

750 0.01 TL 17.66 3.31 26941 1115 TL 0.20 0.00 43852 188 TL 0.89 0.26 17486 1990
0.05 TL 25.04 0.72 17386 766 TL 0.24 0.00 25379 107 TL 0.23 0.00 13336 737
0.10 TL 9.33 0.83 12972 704 TL 8.44 0.01 17847 110 TL 0.03 0.00 15583 558
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Table 8: Detailed results for instance GNU listing solution times in seconds (t[s]), remaining optimality
gaps in % (g[%]), primal gaps to the best known solution (p[%]), numbers of added Benders cuts (#C),
and numbers of branch-and-bound nodes (#B). TL denotes “time limit reached”.

BEN BENF BENFR
K |Ω| p t[s] g[%] p[%] #C #B t[s] g[%] p[%] #C #B t[s] g[%] p[%] #C #B

2 250 0.01 4 0.00 0.00 252 0 4 0.00 0.00 252 0 4 0.00 0.00 252 0
0.05 7 0.00 0.00 416 0 7 0.00 0.00 451 0 7 0.00 0.00 451 0
0.10 114 0.00 0.00 507 1089 1775 0.00 0.00 505 1061 118 0.00 0.00 505 1061

500 0.01 8 0.00 0.00 502 0 8 0.00 0.00 502 0 8 0.00 0.00 502 0
0.05 19 0.00 0.00 950 0 17 0.00 0.00 965 0 17 0.00 0.00 965 0
0.10 2538 0.00 0.00 1013 4422 TL 0.11 0.04 1023 553 1705 0.00 0.00 1023 3101

750 0.01 14 0.00 0.00 753 0 12 0.00 0.00 753 0 12 0.00 0.00 753 0
0.05 31 0.00 0.00 1357 6 32 0.00 0.00 1605 2 30 0.00 0.00 1605 2
0.10 TL 0.07 0.00 1507 3831 TL 0.13 0.04 1521 246 TL 0.05 0.00 1521 2222

5 250 0.01 5 0.00 0.00 294 0 5 0.00 0.00 305 0 5 0.00 0.00 305 0
0.05 118 0.00 0.00 4660 1181 32 0.00 0.00 2325 19 28 0.00 0.00 1955 92
0.10 135 0.00 0.00 647 1963 589 0.00 0.00 1066 835 49 0.00 0.00 596 144

500 0.01 11 0.00 0.00 650 0 11 0.00 0.00 671 0 10 0.00 0.00 671 0
0.05 292 0.00 0.00 8468 1309 85 0.00 0.00 5624 26 60 0.00 0.00 2922 148
0.10 1722 0.00 0.00 1362 17240 TL 0.06 0.04 2921 2747 683 0.00 0.00 1175 13648

750 0.01 16 0.00 0.00 948 0 16 0.00 0.00 971 0 16 0.00 0.00 971 0
0.05 632 0.00 0.00 15624 1159 101 0.00 0.00 6581 19 84 0.00 0.00 4169 135
0.10 TL 0.14 0.03 1841 7248 TL 0.09 0.03 3135 832 TL 0.05 0.00 1761 19343

10 250 0.01 45 0.00 0.00 4249 1617 9 0.00 0.00 1024 0 9 0.00 0.00 1024 0
0.05 TL 13.95 2.34 14832 2130 719 0.00 0.00 14980 227 TL 0.47 0.00 6351 28910
0.10 108 0.00 0.00 1451 2886 46 0.00 0.00 909 4 50 0.00 0.00 928 24

500 0.01 214 0.00 0.00 12793 3383 18 0.00 0.00 2087 0 18 0.00 0.00 2087 0
0.05 TL 17.29 3.45 24249 1228 TL 0.26 0.00 31892 326 TL 2.39 0.54 17196 2785
0.10 324 0.00 0.00 1775 2079 74 0.00 0.00 1479 4 90 0.00 0.00 1513 219

750 0.01 82 0.00 0.00 9096 962 23 0.00 0.00 2173 0 23 0.00 0.00 2173 0
0.05 TL 15.82 2.61 26384 1056 1249 0.00 0.00 30295 161 TL 1.01 0.00 13916 9551
0.10 TL 0.01 0.00 8228 6000 123 0.00 0.00 2710 4 159 0.00 0.00 2654 100

15 250 0.01 TL 0.99 0.08 61044 10000 14 0.00 0.00 2232 0 13 0.00 0.00 2232 0
0.05 TL 20.12 3.74 12605 2033 TL 1.03 0.00 24089 249 TL 1.70 0.18 7077 7150
0.10 TL 0.04 0.00 8616 7987 40 0.00 0.00 1335 7 37 0.00 0.00 1288 14

500 0.01 TL 1.34 0.06 88278 5746 19 0.00 0.00 2682 0 20 0.00 0.00 2682 0
0.05 TL 18.92 3.53 23165 1300 TL 0.44 0.00 33299 210 TL 1.37 0.00 8873 6370
0.10 TL 0.02 0.00 7255 6500 91 0.00 0.00 2344 7 1355 0.00 0.00 3089 4319

750 0.01 TL 0.89 0.00 104068 6695 29 0.00 0.00 3944 0 27 0.00 0.00 3944 0
0.05 TL 22.40 4.28 22060 947 TL 1.61 0.05 36161 98 TL 2.02 0.00 18632 2240
0.10 TL 0.59 0.03 26796 1252 188 0.00 0.00 3316 1 180 0.00 0.00 3316 1

25 250 0.01 TL 2.99 0.18 27703 1950 21 0.00 0.00 4063 0 20 0.00 0.00 4063 0
0.05 TL 23.14 2.86 13295 1700 TL 2.57 0.00 25571 120 TL 2.82 0.03 11162 2527
0.10 TL 0.15 0.03 11431 3804 53 0.00 0.00 2069 10 75 0.00 0.00 2112 379

500 0.01 TL 2.68 0.08 42336 1368 39 0.00 0.00 7130 0 36 0.00 0.00 7130 0
0.05 TL 25.03 3.82 20748 1000 TL 4.03 1.29 27665 66 TL 2.72 0.00 15870 972
0.10 TL 1.32 0.14 21083 1465 293 0.00 0.00 6050 39 1634 0.00 0.00 5981 4818

750 0.01 TL 2.89 0.34 49376 980 46 0.00 0.00 9722 0 43 0.00 0.00 9722 0
0.05 TL 29.39 5.00 23495 710 TL 2.29 0.00 33577 47 TL 2.46 0.00 15587 430
0.10 TL 0.11 0.01 22593 1700 1167 0.00 0.00 7449 158 TL 0.03 0.01 16409 4734
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Table 9: Detailed results for instance ENRON listing solution times in seconds (t[s]), remaining optimality
gaps in % (g[%]), primal gaps to the best known solution (p[%]), numbers of added Benders cuts (#C),
and numbers of branch-and-bound nodes (#B). TL denotes “time limit reached”.

BEN BENF BENFR
K |Ω| p t[s] g[%] p[%] #C #B t[s] g[%] p[%] #C #B t[s] g[%] p[%] #C #B

2 250 0.01 35 0.00 0.00 500 0 32 0.00 0.00 500 0 32 0.00 0.00 500 0
0.05 96 0.00 0.00 504 0 90 0.00 0.00 504 0 90 0.00 0.00 504 0
0.10 174 0.00 0.00 504 31 599 0.00 0.00 504 4 606 0.00 0.00 504 4

500 0.01 66 0.00 0.00 1001 0 61 0.00 0.00 1001 0 61 0.00 0.00 1001 0
0.05 180 0.00 0.00 1003 0 196 0.00 0.00 1003 0 196 0.00 0.00 1003 0
0.10 341 0.00 0.00 1004 18 1703 0.00 0.00 1004 9 1193 0.00 0.00 1004 9

750 0.01 102 0.00 0.00 1501 0 96 0.00 0.00 1501 0 95 0.00 0.00 1501 0
0.05 255 0.00 0.00 1508 0 254 0.00 0.00 1508 0 261 0.00 0.00 1508 0
0.10 689 0.00 0.00 1503 59 1416 0.00 0.00 1503 0 1441 0.00 0.00 1503 0

5 250 0.01 45 0.00 0.00 524 244 201 0.00 0.00 668 214 54 0.00 0.00 550 186
0.05 105 0.00 0.00 648 27 252 0.00 0.00 662 16 134 0.00 0.00 653 16
0.10 199 0.00 0.00 606 82 2557 0.00 0.00 649 38 909 0.00 0.00 591 36

500 0.01 78 0.00 0.00 1030 172 270 0.00 0.00 1196 114 99 0.00 0.00 1128 96
0.05 188 0.00 0.00 1286 4 285 0.00 0.00 1454 3 274 0.00 0.00 1454 3
0.10 383 0.00 0.00 1166 12 1749 0.00 0.00 1170 10 1276 0.00 0.00 1170 10

750 0.01 129 0.00 0.00 1529 198 1437 0.00 0.00 2263 524 282 0.00 0.00 1673 192
0.05 283 0.00 0.00 1925 4 374 0.00 0.00 1926 3 372 0.00 0.00 1926 3
0.10 654 0.00 0.00 1674 47 TL 0.01 0.00 2105 5 2492 0.00 0.00 2096 32

10 250 0.01 35 0.00 0.00 604 25 36 0.00 0.00 628 0 37 0.00 0.00 628 0
0.05 141 0.00 0.00 1295 153 143 0.00 0.00 1252 0 148 0.00 0.00 1252 0
0.10 202 0.00 0.00 724 27 245 0.00 0.00 847 0 249 0.00 0.00 847 0

500 0.01 95 0.00 0.00 1309 173 190 0.00 0.00 1810 95 96 0.00 0.00 1306 96
0.05 409 0.00 0.00 3446 345 529 0.00 0.00 2561 26 375 0.00 0.00 2436 25
0.10 438 0.00 0.00 1617 90 890 0.00 0.00 2069 4 906 0.00 0.00 2069 4

750 0.01 203 0.00 0.00 2308 394 265 0.00 0.00 2596 87 155 0.00 0.00 2098 231
0.05 972 0.00 0.00 5112 718 1104 0.00 0.00 4184 25 655 0.00 0.00 3655 97
0.10 784 0.00 0.00 2774 124 1854 0.00 0.00 3442 26 1342 0.00 0.00 3321 24

15 250 0.01 45 0.00 0.00 1325 286 41 0.00 0.00 944 0 39 0.00 0.00 944 0
0.05 TL 0.05 0.00 10453 2135 200 0.00 0.00 2294 10 185 0.00 0.00 2294 10
0.10 268 0.00 0.00 1674 1007 325 0.00 0.00 1723 4 319 0.00 0.00 1723 4

500 0.01 82 0.00 0.00 1938 96 80 0.00 0.00 1649 0 73 0.00 0.00 1649 0
0.05 TL 0.06 0.02 16511 849 388 0.00 0.00 3724 4 378 0.00 0.00 3724 4
0.10 561 0.00 0.00 3064 1302 604 0.00 0.00 3361 4 633 0.00 0.00 3361 4

750 0.01 120 0.00 0.00 2462 94 118 0.00 0.00 2652 0 114 0.00 0.00 2652 0
0.05 TL 0.04 0.01 17057 750 561 0.00 0.00 5273 3 582 0.00 0.00 5273 3
0.10 1034 0.00 0.00 4654 1169 1094 0.00 0.00 5218 0 1046 0.00 0.00 5218 0

25 250 0.01 TL 0.02 0.00 12897 7861 53 0.00 0.00 1943 3 52 0.00 0.00 1890 14
0.05 TL 0.16 0.04 15228 1112 259 0.00 0.00 3906 3 263 0.00 0.00 3902 5
0.10 TL 0.05 0.02 9250 1538 389 0.00 0.00 3343 6 364 0.00 0.00 3255 13

500 0.01 TL 0.04 0.01 26741 2571 102 0.00 0.00 3911 3 128 0.00 0.00 4297 167
0.05 TL 0.15 0.04 17602 690 581 0.00 0.00 8014 5 573 0.00 0.00 8014 5
0.10 TL 0.12 0.03 15781 458 973 0.00 0.00 5689 9 868 0.00 0.00 5464 13

750 0.01 TL 0.06 0.01 25731 1201 149 0.00 0.00 6021 3 226 0.00 0.00 5817 210
0.05 TL 0.12 0.02 18687 386 892 0.00 0.00 11451 3 865 0.00 0.00 11451 3
0.10 TL 0.10 0.01 20942 245 1606 0.00 0.00 10033 3 1507 0.00 0.00 10030 6

24



Table 10: Detailed results for SW instances with average node degree 8, listing avg. solution times in
seconds (t̄[s]), avg. remaining optimality gaps in % (ḡ[%]), avg. numbers of added Benders cuts (#C),
and avg. numbers of branch-and-bound nodes (#B). Each row corresponds to a set of five instances.
TL denotes “time limit reached”.

BEN BENF BENFR

K |Ω| p t[s] g[%] #C #B t[s] g[%] #C #B t[s] g[%] #C #B

10 250 β 2088 0.75 17362 12980 4 0.00 1870 3 5 0.00 1834 5
0.01 1 0.00 260 0 1 0.00 260 0 1 0.00 260 0
0.05 2 0.00 514 79 1 0.00 509 0 1 0.00 509 0
0.10 TL 1.58 22919 14910 6 0.00 1953 12 6 0.00 1768 37

500 β 3338 1.22 37528 11254 7 0.00 3553 3 8 0.00 3504 15
0.01 1 0.00 553 0 1 0.00 553 0 1 0.00 553 0
0.05 3 0.00 895 152 3 0.00 956 0 3 0.00 956 0
0.10 TL 1.35 34495 11105 11 0.00 3516 9 13 0.00 3387 83

750 β 3390 1.58 54354 6628 14 0.00 5160 8 13 0.00 4880 16
0.01 2 0.00 802 0 2 0.00 802 0 2 0.00 802 0
0.05 5 0.00 1299 102 4 0.00 1392 0 4 0.00 1392 0
0.10 TL 1.73 47851 7401 25 0.00 5293 31 64 0.00 5150 881

15 250 β TL 5.48 35686 6399 19 0.00 3576 19 46 0.00 2879 793
0.01 1 0.00 302 4 1 0.00 311 1 1 0.00 311 1
0.05 109 0.00 2957 8148 2 0.00 1138 0 2 0.00 1138 0
0.10 TL 5.51 30340 6776 108 0.00 6403 128 692 0.00 4020 8926

500 β TL 5.20 48603 3657 35 0.00 6386 21 52 0.00 4861 238
0.01 2 0.00 596 1 2 0.00 632 0 2 0.00 632 0
0.05 1134 0.02 7859 24863 4 0.00 1920 0 4 0.00 1920 0
0.10 TL 5.11 39002 5118 773 0.07 13543 251 808 0.20 8723 2426

750 β TL 5.80 59317 2968 52 0.00 8622 19 70 0.00 7063 134
0.01 2 0.00 917 5 2 0.00 950 0 2 0.00 950 0
0.05 572 0.00 9332 15772 6 0.00 2816 0 7 0.00 2816 0
0.10 TL 5.08 52384 3834 393 0.00 15561 151 2106 0.15 12343 9168

25 250 β TL 11.39 34219 5361 1580 0.22 22268 211 3275 0.35 6756 20077
0.01 4 0.00 698 875 1 0.00 616 0 1 0.00 616 0
0.05 TL 1.60 38307 6443 5 0.00 2844 3 5 0.00 2831 8
0.10 TL 10.86 28183 6193 TL 1.28 35681 279 TL 1.58 11031 11678

500 β TL 11.33 49545 3480 2702 0.46 36342 187 TL 0.79 14666 7572
0.01 20 0.00 1323 4288 2 0.00 1108 0 2 0.00 1108 0
0.05 TL 1.57 49813 4110 9 0.00 5257 1 10 0.00 5257 1
0.10 TL 10.03 36043 3930 TL 2.42 38417 167 TL 2.22 19619 5291

750 β TL 10.87 56315 2829 3089 0.53 42854 141 TL 0.67 16720 3708
0.01 19 0.00 1962 1922 3 0.00 1549 1 3 0.00 1549 1
0.05 TL 1.50 57155 3158 13 0.00 6885 1 13 0.00 6885 1
0.10 TL 10.56 45887 2797 TL 2.86 41729 116 TL 2.59 27502 2869
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Table 11: Detailed results for SW instances with average node degree 16, listing avg. solution times in
seconds (t̄[s]), avg. remaining optimality gaps in % (ḡ[%]), avg. numbers of added Benders cuts (#C),
and avg. numbers of branch-and-bound nodes (#B). Each row corresponds to a set of five instances.
TL denotes “time limit reached”.

BEN BENF BENFR

K |Ω| p t[s] g[%] #C #B t[s] g[%] #C #B t[s] g[%] #C #B

10 250 β 926 0.00 6804 11744 5 0.00 2057 6 5 0.00 2058 41
0.01 1 0.00 370 139 1 0.00 357 0 1 0.00 357 0
0.05 TL 6.04 21073 10969 1869 0.41 22290 640 3308 1.23 9330 30518
0.10 1556 0.00 5401 29261 4 0.00 1729 1 4 0.00 1729 1

500 β 2068 0.02 12012 12878 9 0.00 4190 4 14 0.00 4147 121
0.01 2 0.00 620 22 2 0.00 647 0 2 0.00 647 0
0.05 TL 6.68 28225 7110 TL 1.31 37959 711 TL 2.26 15841 14208
0.10 2859 0.03 12648 18161 10 0.00 3719 6 10 0.00 3685 16

750 β 3322 0.05 24674 9721 16 0.00 6643 5 45 0.00 6980 325
0.01 3 0.00 935 34 3 0.00 956 0 3 0.00 956 0
0.05 TL 7.68 34777 4488 TL 2.66 44292 358 TL 3.16 25780 6934
0.10 TL 0.05 19238 14090 17 0.00 5029 10 18 0.00 4934 59

15 250 β TL 0.22 17116 18145 5 0.00 2162 5 5 0.00 2139 13
0.01 17 0.00 1026 2915 2 0.00 609 0 2 0.00 609 0
0.05 TL 12.72 18115 7661 TL 4.10 35572 275 TL 3.94 11155 11757
0.10 TL 0.22 14295 20434 6 0.00 2052 8 6 0.00 2011 15

500 β TL 0.33 29932 8375 9 0.00 3933 4 10 0.00 3912 9
0.01 8 0.00 1364 1249 3 0.00 1083 0 3 0.00 1083 0
0.05 TL 12.39 25268 4840 TL 6.48 32090 97 TL 5.23 17107 4791
0.10 TL 0.36 26515 9682 21 0.00 4291 44 22 0.00 3804 278

750 β TL 0.44 38202 5862 17 0.00 5976 13 18 0.00 5772 57
0.01 20 0.00 2039 3422 4 0.00 1532 0 4 0.00 1532 0
0.05 TL 12.68 32180 3127 TL 8.06 33507 71 TL 6.24 21023 2854
0.10 TL 0.38 32407 6966 36 0.00 6411 53 41 0.00 5602 325

25 250 β TL 0.89 23954 11487 11 0.00 3095 23 14 0.00 2900 115
0.01 TL 0.50 23431 42032 3 0.00 1840 1 3 0.00 1838 1
0.05 TL 19.82 17887 5471 TL 7.12 26599 52 TL 6.64 11878 4151
0.10 TL 0.88 17708 11992 312 0.00 6383 620 1014 0.01 3188 21827

500 β TL 1.13 30181 5443 29 0.00 5647 26 40 0.00 5222 165
0.01 TL 0.60 37009 8901 7 0.00 3210 7 7 0.00 3111 19
0.05 TL 20.52 25550 3028 TL 15.28 24881 27 TL 8.73 19012 1752
0.10 TL 1.02 26661 4891 835 0.00 12438 1074 2520 0.01 5355 26615

750 β TL 1.21 37604 3450 48 0.00 8044 27 57 0.00 7258 125
0.01 TL 0.48 40315 8274 9 0.00 4217 4 8 0.00 4140 7
0.05 TL 20.55 31485 2226 TL 20.24 23668 16 TL 9.38 19664 512
0.10 TL 1.13 33723 2671 1853 0.01 18360 1132 3097 0.03 8083 16205
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