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Abstract. This work deals with the application of metaheuristics to
the fuel consumption minimization problem of hybrid electric vehicles
(HEV) considering exactly specified driving cycles. A genetic algorithm,
a downhill-simplex method and an algorithm based on swarm intelligence
are used to find appropriate parameter values aiming at fuel consumption
minimization. Finally, the individual metaheuristics are combined to a
hybrid optimization algorithm taking into account the strengths and
weaknesses of the single procedures. Due to the required time-consuming
simulations it is crucial to keep the number of candidate solutions to be
evaluated low. This is partly achieved by starting the heuristic search
with already meaningful solutions identified by a Monte-Carlo procedure.
Experimental results indicate that the implemented hybrid algorithm
achieves better results than previously existing optimization methods on
a simplified HEV model.
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1 Introduction

Due to the requirement of lower fuel consumption and emissions it is necessary
that the automotive industry comes up with new approaches. One of these are
hybrid electric vehicles (HEV) which have a much higher flexibility concerning
operation strategies and components compared to conventional vehicles utilizing
only a combustion engine. The propulsion system of HEVs consists of a conven-
tional combustion engine and electric machines. With the assistance of electric
machines it is possible to achieve higher efficiency, in particular by providing
energy recuperation in deceleration phases.

Nowadays engines and vehicles can be numerically simulated with high ac-
curacy, which makes it easier to analyze different operation strategies and the
consequences of their modification. Our aim is to minimize the fuel consumption



in exactly specified driving cycles of such HEV computer models. The vehicle
is simulated by the software GT-SUITE3 using physics-based one-dimensional
modeling thus being able to calculate the fuel consumption and the battery state
of charge (SOC) for a specific driving cycle. Depending on the duration of the
driving cycle, this can take several minutes on current hardware. In general, the
fuel consumption is influenced by a large number of adjustable parameters from
which we preselected a meaningful subset for optimization: velocities at which
the vehicle switches from parallel to series hybrid mode and vice versa, the SOC
operating limits and the gear shifting strategy. In parallel mode the internal
combustion engine (ICE) and/or the electric machines are used for propulsion
while in series mode only electric propulsion is provided utilizing the ICE to
power the electric generator. A detailed parameter description is given in Sec-
tion 5. All n parameters p = (p1, . . . , pn) of the HEV model are real-valued and
have individual lower and upper bounds [pmin

i , pmax
i ], ∀i = 1 . . . n. The battery

SOC is required to be nearly identical at the beginning and the end of a driving
cycle in order to guarantee a fair comparison to other vehicles. So we considered
the quadratic deviation between the SOC at the beginning (SOC begin) and at
the end (SOC end) of the driving cycle. The objective function to be minimized
is:

f(p) = wcons · cons(p) + wsdev · (SOC begin(p)− SOC end(p))
2

The fuel consumption is denoted by cons(p) and constants wcons ≥ 0 and
wsdev ≥ 0 are used for weighting the individual terms appropriately. A solution
p∗ is optimal if f(p∗) is minimal, so f(p∗) ≤ f(p), ∀ p. A direct determination
of proven optimal parameter settings is practically impossible due to the high
complexity of f , even obtaining the objective for one set of parameters by simu-
lation is quite time-consuming. So the goal was to find a heuristic optimization
strategy making it possible to reliably find a solution that is close to optimal only
requiring a limited number of simulations. Beginning with standard optimiza-
tion techniques diverse in most cases more efficient algorithms than Design Of
Experiments (DOE) [11], which is included in GT-SUITE, have been developed
by considering special properties of the problem. A genetic algorithm (GA) [9],
a downhill-simplex method [12], and an algorithm based on swarm intelligence
(PSO) [5] provided, after some specific tailoring, in preliminary experiments the
best results. Major features are: Starting solutions are not initialized randomly
but by a Monte Carlo search procedure to reduce the number of required it-
erations. In the GA’s recombination operator the choice which value is passed
on depends on the deviation of the parameter values from the two parent so-
lutions to the best solutions in the population. The simplex reduction in the
downhill simplex method is not applied here because it re-calculates all points
of the new simplex and this mostly ends up in worse objective function values
due to possibly unbalanced SOCs. The best solution from the PSO algorithm
is additionally improved by a surface-fitting algorithm. Finally, the individual
metaheuristics are combined to a hybrid optimization approach taking into ac-
count the strengths and weaknesses of the single procedures.

3 GT-SUITE is a software by Gamma Technologies, Inc., http://www.gtisoft.com



For a model of an existing HEV with complex operation strategy a fuel sav-
ing of about 33% compared to a related conventionally powered vehicle could be
achieved. The part our hybrid optimization algorithm contributes is about five
percent in comparison to setting the parameters by the methods implemented
in GT-SUITE. These standard optimization methods in particular have prob-
lems with the high number of parameters. Furthermore, we are able to show
that our proposed algorithm achieves better results on another simplified HEV
benchmark model too, see Section 5.

The following Section discusses related work, Section 3 presents the individual
metaheuristics which are then combined in Section 4 to a hybrid algorithm,
Section 5 shows experimental results, and Section 6 concludes the article.

2 Related Work

In GT-SUITE a Design of Experiments optimization method is implemented.
Here the search space is typically approximated by a quadratic or cubic polyno-
mial function based on a large number of simulated parameter sets distributed
in the search space. The minimum of this function is then derived analytically.
In [7] and [14] several optimization algorithms are applied to HEV models and
the authors state that the considered search space is highly non-linear with
non-continuous areas. Similarly to our problem, the goal is to minimize the fuel
consumption for a given driving cycle. As additional constraint they consider a
minimum requirement on vehicle dynamics. As simulation software ADVISOR4

is used and the applied optimization algorithms are taken from iSIGHT5,
VisualDOC6 and MATLAB7. As optimization procedures fmincon from MAT-
LAB, VisualDOC’s DGO and RSA, as well as the search strategies Sequential
Quadratic Programming (SQP) [13], DIviding RECTangle (DIRECT) [1] and a
GA are applied. Unfortunately, there is no information given about the imple-
mentation and configuration of the used algorithms, in particular concerning the
GA. The best result is achieved by the DIRECT method, the gradient strategies
can only find rather poor local optima.

In [2] and [3] among others the simulation software PSAT8 and its DIRECT
optimization algorithms, a GA, Simulated Annealing (SA) and PSO are applied
to a HEV model whereas SA and DIRECT are the most successful approaches.
The objective is the same as in [7] and [14].

Furthermore, in [3] a hybrid algorithm combining SQP with DIRECT is pre-
sented but only applied on a simpler test function. However, in few iterations
the global optimum is found in most cases. In [4] and [10] a multi-objective GA

4 ADVISOR (Advanced Vehicle Simulator) is a software from AVL,
http://www.avl.com

5 iSIGHT is a software from Simulia, http://www.simulia.com
6 VisualDOC is a software from VR & D, http://www.vrand.com
7 MATLAB is a software from MathWorks http://www.mathworks.de
8 PSAT (Powertrain System Analysis Toolkit) was developed by Argonne National
Laboratory, http://www.transportation.anl.gov/modeling simulation/PSAT



is successfully applied to a HEV model, considering fuel consumption and emis-
sions minimization. Comparisons with other methods are not presented. In [15]
and [16] a PSO algorithm was proposed for a HEV model for improving a given
operation strategy. ADVISOR is used as simulation software. The SOC devia-
tion on the defined driving cycles is integrated in the objective function. Given
the characteristics of the vehicle the operation strategy is optimized resulting in
an improvement compared to the strategy before. How the original strategy has
already been optimized before is not stated. Compared to GT-SUITE parts of
the objective function can be calculated much faster in ADVISOR and PSAT by
directly solving mathematical functions. As a consequence, such models can be
simulated significantly faster and gradient strategies can be applied. However,
the benefit of using GT-SUITE is the much higher accuracy of the HEV model.
In the mentioned related work not only the operation strategy but also other
criteria, e.g. the battery capacity and the number of battery cells, are optimized.
The requirement of a balanced SOC is either considered as a side constraint or
by adding the difference to a balanced SOC as a penalty term to the objective
function. In the first case a large number of infeasible solutions are possibly
calculated, mainly by methods like DOE [11].

Most previous works use standard optimization methods from existing li-
braries without problem-specific adaptations, and different articles report differ-
ent optimization methods to work best. Unfortunately, a direct comparison of
these approaches is hardly possible since only few algorithmic details are avail-
able. Thus, it is difficult to draw general conclusions about appropriate methods
for the optimization of HEVs. GT-SUITE provides a DOE-based optimization
method too, however, in our studies we recognized that DOE can only handle
up to five parameters in reasonable time for our HEV models.

3 Metaheuristics

We now describe the new metaheuristic approaches we developed. For more de-
tails, in particular also deeper studies of the individual algorithms’ performances
and influences of strategy parameters, we refer to the first author’s master the-
sis [6], on which this article is based.

Monte-Carlo Search Method The Monte-Carlo method [8] is primarily used
to generate manifold initial solutions for the other algorithms. The initial range
of values for each parameter is set to the entire range of possible values. Conse-
quently, in a first step only random solutions are generated. After each iteration
the parameter range is reduced by a factor and moved towards the best known
solution. Due to the fact that the algorithm mainly generates initial solutions
subject to further improvement we choose a factor between 0.8 and 0.9 and keep
the number of computed solutions constant.

Downhill-Simplex Method This method [12], also known as Nelder-Mead
method, is based on a v-simplex, which is a polytope of dimension v defined by
v + 1 points spanning the convex hull. Each point corresponds to a particular



set of parameters together with its objective function value. By comparing the
different function values the tendency of the values and gradient directions are
approximated. In each iteration, the point with the worst value is replaced by a
newly derived one. In our implementation we omit the otherwise usual shrinking
of the whole simplex because it would be very time-consuming to re-calculate
the objective values of all points of the simplex. Furthermore, these new points
are likely to have an unbalanced SOC.

Genetic Algorithm (GA) In our GA [9] each individual is directly represented
by a vector of real parameter values. The selection of solutions from the popula-
tion for pairwise recombination occurs uniformly at random. To recombine two
solutions p1, p2, for each parameter i = 1 . . . n, either p1i or p2i is adopted. The
choice which value is passed on considers the average deviation to the d best
solutions qj , j = 1 . . . d, in the population:

devi(p
k) =

1

d

d
∑

j=1

|qji − pki | ∀k ∈ {1, 2}, ∀i = 1 . . . n

The probability of adopting the i-th parameter from parent pk is then defined as
P comb
i (pk) = 1− devi(p

k)/(devi(p
1)+ devi(p

2)). Furthermore, each parameter is
mutated with a small probability Pmut by assigning it a new random value within
its bounds. Once an offspring solution p′ has been generated and its objective
value f(p′) determined via simulation, a solution r is randomly selected from the
population and replaced with probability P rep = (f(r)− c)/(f(p′) + f(r)− 2c).
The correction value c ∈ [0,min{f(p′), f(r)}) is used to control the influence of
the objective values: the higher c the higher the probability of a new solution
with better objective value being chosen as new member of the population.

Particle-Swarm-Optimization (PSO) This optimization method was orig-
inally derived from the behavior of birds and shoals of fish [5]. Each solution
pj , j = 1 . . .m, corresponds to an individual of a swarm of size m moving within
the search space. The motion depends both on the best known solution of the
individual and the best solution of the entire swarm. First, m solutions are ran-
domly selected from the solution set of the Monte-Carlo search procedure to
form the initial population. For each individual j the so-far best “local” solution
pL,j encountered on its path is stored. Moreover, pG denotes the overall best
known solution. In each iteration the parameter set of each individual is modi-
fied depending on both the local and global best solutions. For each individual
sj a velocity vector vj ∈ [−1, 1]n is defined and updated as follows:

vji ← vji + αL ·
pL,ji − pji

pmax
i − pmin

i

+ αG ·
pGi − pji

pmax
i − pmin

i

+ rand
∀j = 1 . . .m,

∀i = 1 . . . n.

Constants αL, αG ≥ 0, with αL + αG = 1, control the influence of the local
and global best solutions, respectively, and rand is a random value uniformly
distributed in [−0.1, 0.1]. The positions (solutions) of the individuals are then



updated by pji ← pji + vji · (p
max
i − pmin

i )/δ, where δ ≥ 1 controls the step size. If
a parameter steps out of its corresponding range, it is set to the corresponding
limit. The algorithm terminates after a specified number of iterations.

Surface-Fitting We use surface-fitting to improve the best solution obtained
by the PSO algorithm in our hybrid metaheuristic approach, see Section 4. In
each iteration e ≥ 6 solutions are derived from the so far best solution by varying
two randomly selected parameters p1, p2 slightly. The range of the variation is
limited by the following factors: factor area is initialized with 1 and increases by
1 after every fourth solution. The factors (fit1,fit2) are continuously assigned the
values (−1,−1), (1,−1), (−1, 1) and (1, 1). The constant rad denotes the step size
relative to the range of feasible parameter values. For the chosen parameters i =
1 . . . 2 the parameter values are calculated by pi = pi+area ·fit i·rad ·(p

max
i −pmin

i ).
The new solutions are evaluated and the objective function is approximated by
function c1 + c2 · p1 + c3 · p2 + c4 · p

2
1 + c5 · p

2
2 + c6 · p1 · p2. Coefficients c1 . . . c6

and the minimum of the approximation function are calculated using the GNU
Scientific Library and finally evaluated by simulation.

4 Hybrid Meta-Heuristic (PSAGADO)

Each presented method has its own strenghts and weaknesses. On average the
GA was able to achieve the best results since by mutation it was possible to es-
cape from unpromising areas of the search space. However, rather good solutions
often could not be further improved. The results of the PSO and the downhill
simplex method are highly dependent on the chosen initial solutions. If only the
PSO is applied, the solutions have to be broader distributed in the search space
and should have nearly a balanced SOC. Our hybrid approach (Particle-Swarm
And Genetic Algorithm with Downhill-simplex Optimization, PSAGADO) com-
bines the previously presented algorithms trying to exploit their strengths. Initial
solutions are determined by the Monte-Carlo search method and stored in a so-
lution pool. As not much is known about the search space the PSO is well suited
to be the central algorithm, since it is a robust method considering solutions
with high diversity. After a certain number of iterations the best solution of the
PSO is improved by the surface-fitting procedure if possible. Surface-fitting is
only applied to the best solution because of runtime considerations. The GA is
applied next using the final swarm of the PSO as initial population. If most of
the individuals are similar, the GA still can lead to new best solutions by in-
creasing diversity by mutation. If the solutions are well distributed in the search
space recombination is frequently able to combine two good parameter sets to
a better one. After recombination two solutions are randomly chosen from the
population. If the new solution is better than both selected, one solution is re-
placed by the new solution and the other one by a random solution from the
initial solution pool to restrict similar solutions in the pool. Otherwise only the
chosen solution with the lower objective value will be replaced by the new solu-
tion. If the GA is able to find a new best solution, half of the solutions closest



Algorithm 1: PSAGADO

execute Monte-Carlo search and store all solutions as initial pool1
while termination criterion not met do2

execute PSO3
apply surface-fitting on the best solution of PSO4
execute GA5
if new best solution found then replace half of the solutions closest to best6
else7

execute downhill-simplex8
if no new best solution found then replace all solutions9

Table 1. Algorithm settings.

Monte-Carlo resize = 0.89
SIMPLEX v = 15
SURFACE-FITTING e = 12, rad = 0.02
PSO αL = 0.3, αG = 0.7, m = 30, δ = 10
GA c = min{f(p′), f(r)} − 2, d = 10, Pmut = 10%

to the best solution are replaced by random solutions from the pool to increase
diversity and prevent too much focus on the best solution. The distance D(p) of
parameter set p to the best solution pbest is calculated by

D(p) =
n
∑

i=1

(

|pi − pbesti |

pmax
i − pmin

i

)2

.

If the GA is not able to achieve any improvement, the simplex method is applied.
This usually occurs when most of the PSO solutions are very similar. Although
this could mean that most solutions are near the global optimum bad solutions
may still exist possibly resulting in a shift of the simplex and leading to a new
best solution. If the simplex method leads to an improvement, the process con-
tinues with the PSO. However, if most solutions are quite similar and the PSO
and GA cannot achieve new best solutions then the simplex method usually re-
sults in no improvement, too. In this case a restart is performed by replacing all
solutions but the so-far best with solutions from the initial pool and continuing
with the PSO. Algorithm 1 shows the implementation of PSAGADO.

5 Experimental Results

We applied PSAGADO to a complex real-world and a simplified benchmark
HEV model. Unfortunately we are not allowed to publish details for the real-
world model due to a non-disclosure agreement with the manufacturer. Overall,
a fuel saving of about 33% compared to a related conventionally powered vehi-
cle could be achieved, and the remarkable part PSAGADO contributes is about
five percent in comparison to the parameter setting found by DOE integrated in
GT-SUITE. As simplified benchmark HEV model we used the “parallel-series”
example supplied by GT-SUITE and compare PSAGADO to the integrated DOE



Table 2. Final objective values of PSAGADO, DOE, GA, SIMPLEX and DOE.

Runs Sol. p. Run Worst Best Average Std.Dev.

PSAGADO 10 3600 207.52 206.69 206.92 0.23

PSO 10 3600 229.93 207.22 212.43 12.85
GA 10 3600 208.64 206.98 207.23 0.25
SIMPLEX 10 3600 230.57 207.94 215.93 14.10

DOE 10 3600 210.87 210.19 210.40 0.23

and the individual metaheuristics. To further reduce simulation times a shorter
driving-cycle is used here altogether leading to an evaluation time for one param-
eter set of about 30 seconds. Thus, the runtime of the optimization algorithms
can be neglected compared to the simulation times. Important algorithm specific
settings are shown in Table 1. The Monte-Carlo search method calculates 35 so-
lutions at each of 15 total iterations. The population size for the PSO and GA is
25. In each optimization cycle the PSO is iterated ten times, the surface-fitting
method is applied five times and in the GA 60 new solutions are derived. In
case of no improvement, the simplex will be updated 15 times. The constants
in the objective function are set to wcons = 3.6 and wsdev = 9. All parameter
values have been determined in preliminary tests to fit the limited number of
simulations. The fuel consumption cons is measured in mg, the SOC in percent.
The parameters to be optimized are the gearshift strategy defined by gear1up to
gear4up, the charging limits of the battery SOCmin,SOCmax and hybrid mode
thresholds hev1 , hev2 specifying the velocities switching from parallel to series
mode and vice versa. DOE uses the latin-hypercube method to select the pa-
rameter sets and approximates the mathematical model by a cubic replacement
function. Results obtained from 10 runs with 3600 evaluated solutions per run
for each considered algorithm are summarized in Table 2.

In the optimization progress we observed several local optima from which
one cannot escape by changing only one parameter. If the Monte-Carlo method
leads to a poor local optimum it may take some time until PSAGADO gets out
of it mainly because of the low diversity of the initial solution pool. To prevent
this the range reduction factor could be increased or the number of iterations in
the Monte-Carlo search procedure could be reduced. Another possibility would
be to entirely skip the Monte-Carlo method and use only random solutions.
However, since the number of simulations is strictly limited we decided to ini-
tially restrict the search space even if there is a risk of getting stuck in a local
optimum. DOE often fails because of an inaccurate model approximation in the
relevant areas containing good solutions which can be explained by the rather
naive uniform sampling strategy. Table 3 shows the best solutions obtained by
the individual algorithms; notable are the remarkably strong differences in the
parameter values. Among PSO, SIMPLEX and the GA, the GA performed best,
using mutation to escape from unfavorable areas of the search space. The re-
sults of the PSO strongly depend on the diversity and the SOC balance of the
initial solutions. In the downhill-simplex method it is necessary to start with so-
lutions with almost balanced SOC otherwise it is difficult to find good solutions.



Table 3. Obtained best parameter sets of PSAGADO, PSO, SIMPLEX, GA and DOE.

Parameter Boundaries PSAGADO PSO SIMPLEX GA DOE

hev1 [km/h] 65–100 65.00 65.00 65.04 65.02 100.00
hev2 [km/h] 10–60 60.00 60.00 59.95 59.82 60.00
SOCmax 0.7–0.9 0.79 0.70 0.78 0.73 0.90
SOCmin 0.1–0.7 0.50 0.57 0.47 0.55 0.10
gear1up [km/h] 12–30 29.93 12.93 27.08 29.62 25.87
gear2up [km/h] 32–50 47.84 42.01 38.45 47.19 44.69
gear3up [km/h] 52–70 57.53 57.87 59.11 57.52 53.72
gear4up [km/h] 72–100 72.00 72.10 87.63 72.00 76.13

Fig. 1. Characteristic optimization progresses.

Characteristic optimization progresses of all methods are shown in Fig. 1, where
worst-case scenarios of downhill-simplex method and PSO are shown together
in one curve.

6 Conclusions and Future Work

We considered the problem of optimizing diverse control strategy parameters
of hybrid vehicles in order to minimize fuel consumption over a given driving-
cycle. This problem is characterized by the relatively large number of real-valued
parameters, the multi-modality and discontinuity of the search space, and in
particular the expensive simulations required for evaluating solutions. Conse-
quently, we investigated diverse heuristic strategies including Monte Carlo and
Downhill-Simplex approaches, a specifically adapted GA, and a PSO. Consider-
ing the individual properties of these methods, we finally combined them in the
hybrid PSAGADO. Results on a complex real-world scenario were remarkable,
with PSAGADO’s solution leading to a reduction of the fuel consumption of
about five percent in comparison to a standard optimization strategy provided
by the GT-SUITE simulator. As we are not allowed to give more details here



on these results, a simplified benchmark model was further used for comparison,
also indicating the superiority of PSAGADO over the individual metaheuristics
and GT-SUITE’s DOE.

In future work more testing is necessary and the search space should be stud-
ied in more detail in order to possibly exploit certain features in the optimization
in better ways. A promising idea seems to be to approximate the objective func-
tion with a neural network which is refined at the same time as the optimization
is performed.
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