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Abstract
In this article we consider the network design problem with relays (NDPR) which gives

answers to some important strategic design questions in telecommunication network design.
Given a family of origin-destination pairs and a set of existing links these questions are: (1)
What are the optimal locations for signal regeneration devices (relays) and how many of them
are needed? (2) Could the available infrastructure be enhanced by installing additional links in
order to reduce the travel distance and therefore reduce the number of necessary relays?

In contrast to previous work on the NDPR which mainly focused on heuristic approaches, we
discuss exact methods based on different mixed integer linear programming formulations for the
problem. We develop branch-and-price and branch-price-and-cut algorithms that build upon
models with an exponential number of variables (and constraints). In an extensive computa-
tional study, we analyze the performance of these approaches for instances that reflect different
real-world settings. Finally, we also point out the relevance of the NDPR in the context of
electric mobility.

Key words: Network Design with Relays, Telecommunications, Integer Programming,
Branch-and-Price

1 Introduction
The network design problem with relays (NDPR) was introduced by Cabral et al. (2007) for
modeling the design of telecommunication networks when the maximum distance a commodity
(i.e., signal) can travel is bounded from above by some threshold and when distances exceeding
this limit can be covered by locating special, commodity regenerating equipment (relays) at
intermediate locations. Well known applications in communication networks arise from signal
deterioration and thus there is the need to regenerate them after some maximum distance
by using rather expensive devices (e.g., repeaters), see, e.g., Cabral et al. (2007). Without
regeneration, the transmitted information might be falsified or the signal might be lost. As
regeneration devices are usually expensive the goal is to use as few devices as possible (see Chen
et al. 2010). As an alternative to placing relays the distance along certain connections may also
be reduced by installing additional edges.

Problem Definition.
The network design problem with relays (NDPR) is defined on an undirected graph G = (V,E,
c, w, d) with relay costs c : V → N>0, edge costs w : E → N≥0 and edge lengths d : E → N≥0.
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Figure 1: An NDPR instance and its optimal solution for dmax = 4 and K = {(0, 3), (0, 4), (2, 5),
(3, 4)} in which a relay is installed at node 1 and the augmenting edge {0, 1} is selected. Nodes
are labeled by node index and relay installation costs in parentheses. Edges are labeled by their
lengths and installation costs in parentheses (for augmenting edges). Solid lines indicate free edges
and dashed lines augmenting edges. Black nodes mark the selected relays in the solution.

The edge set E is the disjoint union of the set of free (e.g., existing) edges E0 = {e | w(e) = 0}
and the set of augmenting edges E∗ = {e | w(e) > 0}. Furthermore, K ⊆ V × V is the set of
commodities. Parameter dmax ∈ N>0 defines the maximum distance a commodity can traverse
without regeneration.

The NDPR consists of selecting augmenting edges Ê ⊆ E∗ to install and nodes V̂ ⊆ V
where relays are to be placed minimizing the resulting costs

∑
i∈V̂ ci +

∑
e∈Ê we. A solution

is feasible iff all commodity pairs from K can communicate using the edges in Ê ∪ E0 and
relays at nodes V̂ . Thereby, two distinct nodes s, t ∈ V can communicate if there exists a
walk W = (s = v0, v1, v2, . . . , vk = t), vi ∈ V , 0 ≤ i ≤ k, that does not contain a subwalk
W ′ = (vl, vl+1, . . . , vl+m), 0 ≤ l ≤ k−1, m ≥ 0, l+m ≤ k, whose length d(W ′) =

∑l+m−1
j=l dj,j+1

is greater than dmax and which does not contain a relay at an intermediate node, i.e., vj /∈ V̂
for l < j < l+m. A walk satisfying these conditions is called a feasible walk and a feasible path
is defined analogously.

An example of an NDPR instance together with an optimal solution is given in Figure 1.

Our Contribution and Structure of the Article.
Available literature for the NDPR mainly deals with heuristic approaches (see, e.g., Cabral et al.
(2007), Kulturel-Konak and Konak (2008), Konak (2012)). On the contrary, this article provides
a comprehensive computational study of mixed integer linear programming (MILP) models and
underlying exact algorithms for the NDPR. A common characteristic of the presented MILP
models is that they require an exponential number of variables representing paths in a so-called
communication graph. The communication graph contains the same nodes as the original graph
G and an edge between every two nodes that can be connected via a feasible path without
installing relays.

For deriving computationally viable optimization tools for the proposed MILP models, we
implemented two branch-price-and-cut algorithms. Their performance is assessed on a large
set of benchmark instances—some of them taken from the available literature, and some newly
generated ones.

The article is organized as follows. In the remainder of this section we summarize our
notation and provide an overview of the related literature. In Section 2 we prove some structural
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properties of feasible/optimal solutions that will help us to create tighter formulations. In
Section 3 we discuss transformations of the input graph and associated MILP formulations.
Section 4 provides the details of our algorithmic framework followed by the presentation of our
computational results on a diverse family of benchmark instances in Section 5. Finally, we
discuss challenges and open questions for further research in Section 6 where we also summarize
our main conclusions.

1.1 Notation and Assumptions
To ease notation in many of the results and formulations introduced in the following, we will con-
sider the node pairs (i.e., commodities) to be directed pairs (u, v) ∈ K. This assumption is with-
out loss of generality, since there are no costs nor capacities associated with the routing decisions
in the NDPR. Furthermore, we define the set of sources KS = {u | ∃v ∈ V such that (u, v) ∈ K}
and the set of targets KT

u = {v | (u, v) ∈ K} that have to be reached by source u ∈ KS. Similarly,
the set of all targets is defined as KT = {v | ∃u ∈ V such that (u, v) ∈ K} =

⋃
u∈KS KT

u .
Let δ(S) = {{i, j} ∈ E | i ∈ S, j ∈ V \ S} denote the set of edges incident to S ⊆ V in the

undirected graph G = (V,E). For a directed graph G′ = (V ′, A′) and node subset S ⊆ V ′, we
define δ+(S) = {(i, j) ∈ A′ | i ∈ S, j ∈ V \ S} and δ−(S) = {(i, j) ∈ A′ | i ∈ V \ S, j ∈ S} as the
set of outgoing and incoming arcs, respectively.

Finally, observe that edges e ∈ E such that de > dmax as well as commodities (u, v) ∈ K for
which G contains a feasible path between the endpoints, using free edges from E0 only and no
relays, can be removed in a preprocessing step. Thus, we assume without loss of generality that
neither of them exists in the given input.

1.2 Related Work and Applications in Transportation
The NDPR was introduced by Cabral et al. (2007) who showed that the problem is NP-hard
and described heuristic approaches intended to solve large instances. Furthermore, a MILP
formulation of the problem based on an exponential number of variables is described. Contrary
to our path variables derived in the communication graph (cf. Section 3.1), Cabral et al. (2007)
use variables representing entire walks between the commodities in the original graph (including
the placement of relays). Their formulation is used to derive lower bounds by means of column
generation. At the same time, the subset of generated columns is used to compute heuristic
solutions in a subsequent branch-and-bound phase. Computational results are discussed for
instances with up to 62 nodes, 103 edges and 10 commodities.

A hybrid metaheuristic combining a genetic algorithm with local search has been proposed
by Kulturel-Konak and Konak (2008) whereas an improved genetic algorithm is given in Konak
(2012). In the latter article, Konak also introduces a variant of the MILP formulation by Cabral
et al. (2007) by using separate variables to represent walks and relay placements. However,
no computational studies concerning this model were conducted. Instead, some observations
regarding the set covering constraints introduced in this formulation are used in the design of
the proposed genetic algorithm. Computational results are given on instances with up to 160
nodes and 3624 edges and 10 commodities. Lin et al. (2014) proposed a tabu search approach for
the NDPR. Their solution method computes solutions of almost as good quality as the genetic
algorithm from Konak (2012) but requires less computing time. Very recently, Xiao and Konak
(2017) presented a variable neighborhood search for the NDPR that is combined with an exact
algorithm for the relay placement. Independently from our work an alternative branch-and-price
approach was developed in Yıldız et al. (2018). The authors propose MILP formulations on a so-
called virtual network with an exponential number of edges. Their computational study mainly
focuses on a tree formulation specifically designed for the single source case, i.e., |KS| = 1.

A related version of the NDPR, defined on a directed graph and called the directed network
design problem with relays (DNDPR), has been introduced in Li et al. (2012) where a compact
MILP model and a branch-and-price algorithm have been proposed. The problem definition
is however slightly different from the NDPR: in the DNDPR only simple paths are allowed
for connecting commodity pairs, whereas the NDPR also allows using walks. In fact, allowing
multiple node visits in general makes NDPR solutions significantly less expensive than DNDPR
solutions, see Section 2 for further details. The compact formulation given in Li et al. (2012)
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exploits the fact that, along a path connecting a commodity pair, each node can be visited at
most once. More precisely, it uses a single variable per node to record the distance from the
source at which it is reached. Consequently, this formulation cannot be used for solving the
NDPR. Their branch-and-price algorithm, which is very similar to the one considered by Cabral
et al. (2007), is in general capable of allowing cycles but in the computational experiments
the authors only consider the acyclic case. Finally, Kabadurmus and Smith (2015) study an
extension of the NDPR which considers survivability, edge capacities, and allows for k-splitting
of the routes of a commodity.

Application in Transportation
Yıldız and Karaşan (2015) provide a detailed survey on applications of relay placement problems
in transportation. In some of these applications dealing with hub location issues, hubs are
interpreted as relays, i.e., the location of hubs naturally corresponds to the placement of relays.
The underlying problems are concerned with identifying physical locations of hubs which may
serve as places for the exchange of drivers, trucks and trailers, or as stations where drivers can
rest (cf. Üster and Kewcharoenwong 2011, Campbell and O’Kelly 2012). Moreover, hubs can be
used for switching transportation means or simply for storing the consignment to be picked up
by other drivers (see Üster and Maheshwari 2007). Since certain road sections might be more
costly to use (e.g., if additional tolls need to be paid) or certain possibilities to extend the road
network might exist, the consideration of edge selection is relevant as well. The placement of
refueling stations for alternative-fuel vehicles is another important area where the NDPR arises
as a subproblem. The distance constraints considered in the NDPR are well motivated by the
typical range restrictions of such vehicles, see e.g., Schneider et al. (2014) and the survey by
Pelletier et al. (2016).

Additionally, we want to point out the relation to the so called minimum cost path problem
for plug-in hybrid electric vehicles (PHEV) considered by Arslan et al. (2015). In this problem
a PHEV needs to travel from an origin to a destination node using gasoline refueling and
electric charging stations while minimizing refueling, charging and traveling costs. The authors
solve the problem with a mixed integer quadratically constrained formulation. The considered
problem is very similar to the NDPR. The charging stations can be viewed as some kind of
relays and the vehicle corresponds to a single commodity. The primary difference lies in the fact
that refueling and charging stations need to be modeled as two different types of relays which
introduces additional complexity. Nevertheless, solution techniques introduced in this paper
for the NDPR (in particular, the modeling of path segments between two consecutive charging
stations and the generation of the communication graph) might also be relevant for solving the
PHEV problem. The placement of refueling stations has also been considered in Capar et al.
(2013) and Yıldız et al. (2016) where the goal is to select locations for the refueling stations such
that the total volume of the refueled demand is maximized for a given set of origin-destination
pairs. Yıldız et al. (2016) solve the problem with a branch-and-price approach that uses an
exponential number of path variables to model route feasibility.

Relation to Regenerator Location/Placement Problems
The regenerator location problem (RLP) introduced by Chen et al. (2010) is closely related to
the NDPR but focuses on the placement of regenerators (relays) and no additional edges can be
purchased/installed in the network. More precisely, the RLP is a special case of the NDPR for
E∗ = ∅ and K = {(u, v) | u, v ∈ V u < v}, i.e., it is assumed that all edges have zero costs and
all node pairs need to communicate. As the RLP is equivalent to the maximum leaf spanning
tree problem (MLSTP) and the minimum connected dominating set problem (MCDSP) (see,
e.g., Lucena et al. 2010, Gendron et al. 2014) the NDPR generalizes these problems as well.
Chen et al. (2010) provide several MILP formulations for the RLP which unfortunately cannot
be directly used to solve the NDPR since they are not capable of selecting augmenting edges.
We will, however, use the concept of a communication graph provided in Chen et al. (2010)
for solving the NDPR, cf. Section 3.1 for a detailed description. Further exact approaches for
the RLP have been developed by Rahman et al. (2015) who propose compact formulations and
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branch-and-cut algorithms. In a recent contribution by Yıldız and Karaşan (2015), survivability
requirements are added to the RLP.

Chen et al. (2015) introduced the so called generalized regenerator location problem (GRLP)
which extends the RLP by considering node sets S ⊆ V of potential relay locations and T ⊆ V
of terminal nodes which need to be able to communicate with each other, i.e., K = {(i, j) | i, j ∈
T, i < j}. Again, the proposed models for the GRLP cannot be applied to the NDPR. On the
other hand, the NDPR is able to model the GRLP by assigning infinite costs to the nodes in
V \ S or by adding constraints that prohibit that the nodes in V \ S are chosen as relays. The
latter can be easily done in all formulations that will be introduced in the following.

Another recent contribution by Yıldız and Karaşan (2017) considers several practical exten-
sions like routing, bandwidth allocation, and modulation selection. The proposed flow model
uses an exponential number of variables and is solved by a branch-and-price approach. Finally,
in a broader sense, the NDPR is also related to optimization problems dealing with wavelength
division multiplexing, but, in contrast to the NDPR, the routing of an optical signal has to be
optimized at two layers, the logical and the physical one (see, e.g., Raghavan and Stanojević
2011, Sung and Song 2003, for further details).

2 Solution Properties
In this section we introduce and prove certain structural properties of optimal NDPR solutions
that will be used to derive MILP formulations in the next section. Recall that a solution consists
of a subset Ê ⊆ E∗ of augmenting edges (together with the free edges E0), and a subset V̂ ⊆ V
of nodes where relays have to be installed.

As mentioned above, commodity pairs (u, v) ∈ K are assumed to be ordered, so that routing
a signal from u to v is determined by a feasible (directed) u, v-walk embedded in the subgraph
induced by Ê∪E0, and using a subset of relays from the set V̂ . Hence, even though the solution
corresponds to an undirected graph (along with the placement of relays), routing decisions are
given by directed walks that are incorporated in the solution graph. In our terminology, a
feasible walk corresponds to a directed subgraph embedded in the undirected solution graph, so
that each edge can be traversed in both directions. The number of visits of a node in a feasible
walk is equal to the in-degree of this node in the associated directed graph.

To better illustrate this interplay between the undirected solution graph and the directed
subgraph associated with the routing decisions, let us consider the instance given in Figure 2a
and assume dmax = 4 and K = {(0, 3)}. The unique optimal solution which is visualized in
Figure 2b selects all edges and places a relay at node 2. The routing of a signal from node 0 to
node 3 is given by a directed walk (0, 1, 2, 1, 3) embedded in this solution. This walk traverses
the edge {1, 2} twice and visits node 1 twice forming a cycle, cf. Figure 2c. Notice that the
definition of the NDPR does not forbid such cycles. As a matter of fact, enforcing that each
commodity is connected by a (simple) path might significantly increase the cost of a solution.
In the considered example a relay would need to be placed at node 1 instead of at 2 and edge
{1, 2} would not be traversed. Consequently, the solution cost would increase from 8 to 12.

In the following, we focus on structural properties dealing with routing decisions in an
optimal NDPR solution. We first prove two properties that are concerned with the maximum
number of node visits for connecting a single commodity before we show that analogous results
also hold when simultaneously considering all commodities with a common source.

Property 1. In every optimal solution there exists for every pair (u, v) ∈ K a feasible walk
from u to v visiting each relay at most once.

Proof. Proof. Let W = (u,w0, i, w1, i, . . . , wn−1, i, wn, v) be a feasible u, v-walk in an optimal
solution that consists of subwalks {w0, w1, . . . , wn} with i ∈ V , i 6= u, v, cf. Figure 3. If i is
a relay node, then walk W ′ = (u,w0, i, wn, v) visiting node i only once clearly is a feasible
u, v-walk as well. By repeating this argument, we will end up with a feasible u, v-walk in which
each relay node appears at most once.

Property 2. In every optimal solution there exists for every pair (u, v) ∈ K a feasible walk
from u to v visiting each non-relay node at most twice.
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Figure 2: Example instance with a cyclic solution for dmax = 4 and K = {(0, 3)}. Nodes are
labeled by node index and relay installation costs in parentheses. Augmenting edges are labeled by
their lengths and installations costs in parentheses. Dashed lines indicate augmenting edges. Black
nodes mark the selected relays in the solution.
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Figure 3: Path from u to v visiting node i n times.

Proof. Proof. Let i ∈ V be the non-relay node closest to u which is visited n > 2 times in a feasi-
ble u, v-walk. Let the feasible u, v-walk be represented as W = (u,w0, i, w1, i, . . . , wn−1, i, wn, v)
with subwalks {w0, w1, . . . , wn} that do not visit i, cf. Figure 3. Clearly, each subwalk w`
(1 ≤ ` ≤ n − 1) that contains no relays, can be deleted from W without violating feasibility.
Hence, let us assume that at least one relay is traversed in w`, for all 1 ≤ ` < n, and let r ∈ V be
the relay node with minimum distance from/to i in any of the subwalks w1, . . . wn (considered
undirected). Let (i, v0, v1, . . . , vl = r), vk 6= i, 0 ≤ k ≤ l, be the corresponding path from i to r
with minimum length. Then, W ′ = (u,w0, i, v0, v1, . . . , vl = r, vl−1, . . . , v0, i, wn, v) is a feasible
u, v-walk visiting i exactly two times. By repeating this procedure for each non-relay node which
is visited more than twice, we can construct a feasible walk with the desired property.

Definition 1. A feasible walk w connecting a commodity pair (u, v) ∈ K is called non-redundant
if it does not contain a feasible u, v-subwalk w′, w′ 6= w.

Remark 1. Every non-redundant walk satisfies Properties 1 and 2. If a non-relay node is
visited twice in a non-redundant walk, then the second visit occurs in terms of a cycle that
visits a relay. Each feasible walk can be converted into a non-redundant one using the reduction
techniques from the proofs of Properties 1 and 2.

Theorem 1. Given a source u ∈ KS, in every optimal solution one can embed a digraph rooted
at u containing a feasible walk from u to every target v ∈ KT

u . In this digraph, each relay has
in-degree at most one and each non-relay node has in-degree at most two.

Proof. Proof. We show the existence of such a digraph G̃ by construction. According to Prop-
erties 1 and 2, for each target v ∈ KT

u there exists a feasible walk from u to v with the desired
properties. We choose one of the targets v ∈ KT

u and initialize the graph G̃ with arcs deter-
mining its feasible walk (satisfying Properties 1 and 2). We then continue to iteratively insert
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Figure 4: A directed graph rooted at u that needs to reach targets KT
u = {v, v′, v′′}. We illustrate

the pruning procedure after adding the red walk to the current digraph G̃ shown in black. The
pruning procedure applied to nodes z2 and z1 removes subwalks w3 and w′1, respectively.

non-redundant walks for the remaining targets. Whenever a new walk (associated with a new
target) is considered, there are three possibilities: (a) the graph already contains the walk’s
target, (b) the graph and the walk are node-disjoint (except for the source u), or (c) the graph
and the walk share more than one node.

If (a) occurs, we do not modify G̃ and continue with the next target node. Case (b) allows to
add the walk to G̃ without violating the desired properties since the in-degrees of nodes already
existing in G̃ do not change. The third case (c) is more difficult to handle since simply adding
the walk might increase the in-degree for some nodes and thus can destroy the properties we
need.

Initially we add the walk to G̃. Let Z = {z1, . . . , zn} be the set of nodes on this walk with
in-degree greater than one. Each of these nodes might be in conflict with the required properties.
To resolve this issue we apply a pruning procedure to each node z ∈ Z.

First, we identify a non-redundant walk in G̃ that reaches z at minimum distance (using
as few edges as possible) from the preceding relay or node u. This walk might visit z at most
twice using a cycle to a relay to reduce the distance. Then, we delete all incoming arcs of z not
contained in this walk. Moreover, we iteratively remove preceding arcs of the already removed
ones (not contained in the walk) until we arrive at source node u, a node that is a target, or a
node that has an outgoing walk to a target. For an example see Figure 4.

After processing all u, v-walks in this way we can reach all targets of u in G̃. Moreover, walks
are added such that all nodes in G̃ are guaranteed to meet the required degree restrictions.

3 MILP Formulations
The MILP formulations that will be introduced in the following are based on a communication
graph whose construction from the original graph will be explained next. Afterwards, we will
provide two MILP formulations and discuss their properties.

3.1 Communication Graph
Communication graph GC = (V,C) is defined on the original node set V and its edge set
C consists of all node pairs {i, j} ⊆ V, i 6= j, for which at least one path P with length
d(P ) ≤ dmax exists in G, i.e., i and j can communicate using edges from E∗ or E0 without
installing relays. Recall that (after preprocessing) every feasible path without relays connecting
commodity (u, v) ∈ K in G contains at least one edge e ∈ E∗ with positive costs. Since multiple
paths can be used for connecting a node pair, it is not clear which one of the potentially
exponentially many paths will be used in an optimal solution and thus all of them need to be
considered. Our definition of the communication graph extends the one introduced in Chen
et al. (2010) and Chen et al. (2015) for solving the (G)RLP. In contrast to their definition, our
communication graph considers all edges e ∈ E and not only those with zero costs.

Figure 5 demonstrates how the existence of common subpaths for several commodities pro-
duces a better solution than the one obtained by combining cheapest subpaths of the individual
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Figure 5: Shortest path connections may be suboptimal due to edge reuse. Paths (0, 1, 2) and
(0, 1, 3) are dominated by (0, 2) and (0, 3), respectively. Nevertheless, the optimal solution is
{{0, 1}, {1, 2}, {1, 3}} (K = {(0, 2), (0, 3)} and dmax = 3). Nodes are labeled by node index and
relay installation costs in parentheses. Edges are labeled by their lengths and installation costs in
parentheses (for augmenting edges). Solid lines indicate free edges and dashed lines augmenting
edges.

commodities. Assume K = {(0, 2), (0, 3)} and observe that the cheapest 0, 2-path is the edge
{0, 2} and the cheapest 0, 3-path is edge {0, 3}, both with a cost of 2 yielding a solution with
total cost 4. The union of paths (0, 1, 2) and (0, 1, 3) results, however, in a cheaper solution with
total cost 3.

In the following for each pair of distinct nodes b = {i, j}, let Pb = {p | p is an i, j-path in G,
such that d(p) ≤ dmax} be the set of all feasible i, j-paths in G. Furthermore, let P 0

b = {p | p
is an i, j-path in G0, such that d(p) ≤ dmax} be the set of all such paths in G0 = (V,E0),
i.e., using only free edges. Then, sets C0 = {b = {i, j} | P 0

b 6= ∅} and C∗ = {b = {i, j} |
P 0
b = ∅ and Pb 6= ∅} define the node pairs that can be connected using only free edges and

using at least one augmenting edge, respectively. Thus, the edge set C of communication graph
GC = (V,C) corresponding to G = (V,E) is defined as C = C∗ ∪ C0, i.e., the set of node pairs
that can be connected using edges in E∗ ∪ E0.

Figure 6 illustrates the stepwise generation of a communication graph for the input graph
provided in Figure 6a, dmax = 4. After initializing C with the set of free edges E0, all remaining
edges C0 \E0 corresponding to connections that can be established by using only free edges and
no relays are added, cf. the edges {1, 4} and {2, 3} corresponding to paths (1, 2, 4) and (2, 1, 3),
respectively, in Figure 6b. Next, all connections possible through the use of augmenting edges
(i.e., either augmenting edges or paths containing at least one augmenting edge) are considered,
see the dashed edges in Figure 6c. The corresponding node pairs are connected by dotted lines
in Figure 6c. Communication graph GC is finally obtained by removing potentially existing
multi-edges, cf. Figure 6d where connections in C0 and C∗ are displayed by solid and dotted
lines, respectively.

The following property of the communication graphs is crucial for developing the MILP
models shown below.

Property 3. For every commodity pair (u, v) ∈ K, a non-redundant u, v-walk in the original
graph can be mapped to a simple path in the communication graph with relays placed at all
intermediate nodes (if any).

Proof. Proof. According to Remark 1 there exists a non-redundant (feasible) walk in the original
graph visiting every relay at most once. Observe that we can partition the walk in the original
graph into maximal feasible subwalks such that none of their intermediate nodes are relays.
Communication graph GC contains an edge for every feasible path that is not required to visit
any relays. Therefore, the mentioned subwalks can be translated to edges of the communication
graph leading to the desired simple path. Conversely, each simple path in the communication
graph can be translated to a non-redundant path in the original graph.

Corollary 1. For a feasible solution we can identify for each source u ∈ KS and all its targets
a tree in the communication graph with relays placed at all intermediate nodes where each leaf
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(c) Adding all Connections in C∗ (d) Final Communication Graph

Figure 6: Generation of the Communication Graph for dmax = 4. Nodes are labeled by node index.
Edges are labeled by their lengths. Solid lines indicate free edges, dashed lines augmenting edges,
and dotted lines indicate connections from C∗.
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is a target of u such that each (unique) path to a target corresponds to a feasible walk in the
original graph.

Proof. Proof. We use the graph obtained according to the proof of Theorem 1. Then, we
partition and translate it in the same way as in the proof of Property 3.

The MILP formulations introduced in the following subsections make use of flows or cut-sets
to model feasible paths in the communication graph. In addition, the relation between edges in
GC and (an exponential number of) paths in G is established.

3.2 Multi-Commodity Flow Formulation
We first present a multi-commodity flow formulation on the communication graph (MCF) which
uses one set of flow variables for each commodity in K. It utilizes the following design variables
defined on G:

xe =
{

1, if e is installed in the network
0, otherwise

∀e ∈ E∗

yi =
{

1, if a relay is installed at i
0, otherwise

∀i ∈ V

Using A(C) = {(i, j) | {i, j} ∈ C} we define flow variables fuvij for all commodity pairs (u, v) ∈ K
and each direction of edge {i, j} ∈ C, i.e.,

fuvij =
{

1, if the u, v-path in GC traverses edge {i, j} in direction from i to j
0, otherwise

∀(i, j) ∈ A(C)

Finally, we use variables λpb that correspond to the paths p ∈ Pb that have been identified as
possible realizations for the connections b ∈ C∗. More precisely:

λpb =
{

1, if connection b is realized by path p ∈ Pb
0, otherwise

∀b ∈ C∗

Since no augmenting edges need to be purchased when sending flow through edges from C0, we
do not need to consider path variables for b ∈ C0. The MILP formulation reads as follows:

(MCF) min
∑

i∈V
ciyi +

∑

e∈E∗
wexe (1)

∑

(i,j)∈A(C)

fuvij −
∑

(j,i)∈A(C)

fuvji =





1 i = u

−1 i = v

0 i 6= u, i 6= v

∀(u, v) ∈ K,∀i ∈ V (2)

− yi +
∑

(i,j)∈A(C)

fuvij ≤ 0 ∀(u, v) ∈ K,∀i ∈ V \ {u, v} (3)

− (fuvij + fuvji ) +
∑

p∈Pb

λpb ≥ 0 ∀(u, v) ∈ K,∀b = {i, j} ∈ C∗ (µuvb )

(4)

xe −
∑

p∈Pb:e∈p
λpb ≥ 0 ∀e ∈ E∗,∀b ∈ C∗ (αeb)

(5)
λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb (6)
0 ≤ fuvij ≤ 1 ∀(u, v) ∈ K,∀(i, j) ∈ AC (7)
y ∈ {0, 1}|V |,x ∈ {0, 1}|E∗| (8)
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Constraints (2) ensure that for each commodity (u, v) ∈ K one unit of flow is sent from
u to v. Every node with outgoing flow that is not the source of the corresponding flow must
be a relay node, cf. Property 3. This relation is enforced by inequalities (3). Constraints (4)
ensure that flow along a connection b ∈ C∗ is only permitted if at least one of the available
path realizations has been selected. Due to Property 3, the solution for each commodity pair
(u, v) ∈ K will be a path in GC. Hence, only one arc (i, j) or (j, i) per edge b = {i, j} will be
selected in each variable set. The last set of inequalities guarantees that for all selected path
realizations, the corresponding augmenting edges will be part of the solution. Note that each
variable set only considers a single pair (u, v) ∈ K. Arcs targeting u or leaving v are irrelevant
with respect to the flow variables, hence the respective flow variables can be omitted from the
formulation.

Pricing Subproblem. Since the number of path variables in formulation (MCF) may be
exponentially large we will use column generation for solving its linear programming (LP) re-
laxation. To formulate the pricing subproblem, let µuvb ≥ 0 and αeb ≥ 0 be the dual variables
associated to constraints (4) and (5), respectively. Then, for each b ∈ C∗, the pricing subproblem
(i.e., find a path p ∈ Pb with negative reduced costs) is defined as

arg min
p∈Pb


 ∑

e∈E∗∩p
αeb −

∑

(u,v)∈K
µuvb




Since the second summation is a constant for a fixed b ∈ C∗, it further reduces to finding

arg min
p∈Pb

∑

e∈E∗∩p
αeb ∀b ∈ C∗

which is a weight constrained shortest path problem (WCSPP) defined on the graph G = (V,E)
with edge weights ω : E → R≥0, defined as ωe = de, for all e ∈ E and edge costs γ : E → R≥0
defined as

γe =
{

0, e ∈ E0

αeb, e ∈ E∗ ∀e ∈ E

Further details regarding pricing will be provided in Section 4.2.

3.3 Cut Formulation
We propose an alternative MILP formulation that is based on a single, directed communication
graph in which relays are identified by splitting each node i into two copies i1, i2. Besides relay
arcs (i1, i2) for each node i ∈ V , we add arcs (j2, i1) and (i2, j1) for each edge {i, j} ∈ C, i.e., all
incoming arcs target i1 and all outgoing arcs emanate from i2. We obtain graph G′C = (V ′C, A′C)
with node set V ′C = {i1, i2 | i ∈ V } and arc set A′C = {(i2, j1), (j2, i1) | {i, j} ∈ C} ∪ Ar

C
where arcs in Ar

C = {(i1, i2) | i ∈ V } are used to identify relays. An example of a directed
communication graph is shown in Figure 7 where solid arcs represent free connections, dotted
arcs connections with augmenting edges and dash-dotted arcs correspond to relays.

The formulation introduced next represents each feasible u, v-walk of a given commodity
pair (u, v) ∈ K as a directed path from u to v in G′C with relays placed at all intermediate
nodes (cf. Property 3). To this end we utilize binary variables x for the augmenting edges and
path variables λ, introduced above. In addition, we associate binary variables Xij to the arcs
(i, j) ∈ A′C of the directed communication graph. Due to the one-to-one correspondence between
the arcs in Ar

C and the relays we can use the arc variables directly to identify the relays. The
model then reads as follows:

(CUT) min
∑

i∈V
ciX(i1,i2) +

∑

e∈E∗
wexe (9)

∑

a∈δ−(W )

Xa ≥ 1
∀(u, v) ∈ K,∀W ⊂ V ′C

v1 ∈W,u2 /∈W
(10)
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(a) Original Graph (b) Communication Graph (c) Directed Communication Graph
G = (V,E0 ∪ E∗) GC = (V,C) G′C = (V ′C, A

′
C)

Figure 7: Generation of the directed communication graph G′C = (V ′C, A′C) for dmax = 7. Nodes
are labeled by node index. Edges are labeled by their lengths. Solid lines indicate free edges,
dashed lines augmenting edges, and dotted lines indicate connections from C∗. Dash-dotted arcs
correspond to relays.

−Xi2j1 +
∑

p∈Pb

λpb ≥ 0 ∀b = {i, j} ∈ C∗ (µ1
b) (11)

−Xj2i1 +
∑

p∈Pb

λpb ≥ 0 ∀b = {i, j} ∈ C∗ (µ2
b) (12)

xe −
∑

p∈Pb:e∈p
λpb ≥ 0 ∀e ∈ E∗,∀b ∈ C∗ (αeb) (13)

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb (14)
X ∈ {0, 1}|A′C|,x ∈ {0, 1}|E∗| (15)

We will refer to this model as the cut formulation on a directed communication graph (CUT).
Cut-set inequalities (10) ensure the existence of a directed path in G′C from u2 (the source copy
of u) to v1 (the target copy of v) for each commodity pair (u, v) ∈ K. By construction, every
second arc along this path corresponds to a relay node. Costs for these arcs are included in the
objective function. The remaining arcs of type (i2, j1) or (j2, i1) correspond to paths between
i and j, where b = {i, j} ∈ C∗. Constraints (11) and (12) ensure that whenever an arc (i2, j1)
or (j2, i1) is used, then at least one corresponding path from P{i,j} is selected. Due to the
presence of multiple sources, both arcs (i2, j1) or (j2, i1) can be used in a feasible solution.
Finally, constraints (13) ensure that all augmenting edges of the selected paths are included in
the solution. Since the number of these constraints is in general exponential, we will separate
them dynamically only when violated, see Section 4.3.

Notice that a feasible solution may contain arcs (j2, i1) and (i2, h1) (for some distinct nodes
i, j, h ∈ V ), but not necessarily the arc (i1, i2). This happens, for example, when node i is both
a target and a source, but it is not contained in any connection passing through it (and thus
there is no need to install a relay at i). As a consequence, the arcs that correspond to node
splitting identify the nodes from V where relays have to be placed, whereas the arcs linking the
node copies of i and j map to the paths p ∈ Pb, b = {i, j} as in the (MCF) model.

Pricing Subproblem. To formally state the pricing subproblem for variables λpb we as-
sociate dual variables µ1

b ≥ 0 and µ2
b ≥ 0 to constraints (11) and (12), respectively, and dual

variables αeb ≥ 0 to constraints (13). Similar to the previous two cases, for each b ∈ C∗ we need
to identify a feasible path with minimum reduced costs

min
p∈Pb


 ∑

e∈E∗∩p
αeb − µ1

b − µ2
b


 .
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(a) Original Graph (b) Communication Graph

Figure 8: A partial solution to the LP relaxation of (MCF) that violates connectivity con-
straints (16) for commodity (u, v) ∈ K. The total flow in the communication graph from source u
to its target v equals 1. However, the minimum u-v cut in the original graph is only 0.5.

Thus, we can solve the pricing subproblem by solving for each b ∈ C∗ a WCSPPs with edge
weights set to αeb for e ∈ E∗, and to zero otherwise, see Section 4.2 for more details.

Since formulation (CUT) contains an exponential number of variables (λ) and an exponential
number of cut-set constraints (10), a column-and-row generation approach is employed to solve
its LP relaxation (and a branch-price-and-cut algorithm to find an optimal solution), see, e.g.,
Barnhart et al. (1998), Desrosiers and Lübbecke (2011). Fortunately, the λ variables are not
involved in the connectivity constraints (10). Thus, we can separate these parts so that column
generation can be done independently of cut generation, i.e., the added cuts do not influence
the structure of the pricing subproblem.

3.4 Valid Inequalities
We now describe several types of valid inequalities that are redundant for the set of feasible
solutions but can strengthen the models’ LP relaxations.

3.4.1 Connectivity Cuts in the Original Graph
The example given in Figure 8 shows that connectivity constraints (16) can be violated in LP
solutions of (MCF) and (CUT), respectively. These constraints ensure that the value of each
(undirected) cut separating the source and target of a commodity is at least one. Since cut
inequalities including free edges are trivially satisfied, we only consider subsets W inducing cuts
without free edges in (16).

∑

e∈δ(W )

xe ≥ 1 ∀W ⊂ V : δ(W ) ∩ E0 = ∅,∃(u, v) ∈ K : u /∈W, v ∈W (16)

One can further strengthen the quality of the LP relaxation by replacing undirected cut-set
inequalities (16) by their directed counterparts. To this end, we introduce for each root u ∈ KS

variables zuij ≥ 0, ∀{(i, j) | {i, j} ∈ E∗}. Variable zuij is set to one if one can embed in the
original graph a directed path from u to some v ∈ KT

u using arc (i, j). Then, constraints (16)
can be enhanced by:

∑

a∈δ−(W )

zua ≥ 1 ∀W ⊂ V : δ(W ) ∩ E0 = ∅,∃(u, v) ∈ K : u /∈W, v ∈W (17)

zuij + zuji ≤ x{i,j} ∀u ∈ KS, {i, j} ∈ E∗ (18)
zuij , z

u
ji ≥ 0 ∀u ∈ KS, {i, j} ∈ E∗ (19)

It can easily be seen that the directed connectivity constraints (17) are at least as strong
as the undirected ones introduced above. From Figure 9 we conclude that they can be strictly
stronger if there exists at least one commodity source with more than one target (in the presence
of linking constraints (18)). Note that similar to the undirected variant, we do not add cut-set
inequalities for node subsets with incident free arcs.

Since both classes of connectivity constraints are of exponential size we will dynamically
separate them, see Section 4.3 for details.
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Figure 9: A solution to the LP relaxation for K = {(u, v1), (u, v2)} and w{u,v1} = w{u,v2} = 1,
w{v1,v2} = 3. The solution is optimal with respect to the undirected cut-set inequalities but not
with respect to the directed ones which will cut off this LP solution.

Model Type B Graph

(MCF) BPC
∑

(u,v)∈K
µuv

b Communication Graph GC

(CUT) BPC µ1
b + µ2

b Directed Communication Graph G′C

Table 1: Algorithm Overview. Name (Model), considered decomposition algorithm (Type), model
specific pricing subproblem threshold for WCSPP (B), and considered communication graph
(Graph).

3.4.2 Relay Constraints.
For the (CUT) model we additionally exploit the fact that a relay has to be placed at some
node iff it is an intermediate node along a path within the communication graph. This results
in the following constraints that are added to the (CUT) model:

∑

a∈δ−(i1)

Xa ≤ min(|KS|, |δ(i)| − 1) ·X(i1,i2) ∀i /∈ KS ∪ KT (20)

∑

a∈δ+(i2)

Xa ≤ min(|KT|, |δ(i)| − 1) ·X(i1,i2) ∀i /∈ KS (21)

The first set of constraints makes sure that a relay is installed at each node i which does not
belong to any commodity pair, whenever there is an arc entering i1. Similarly, whenever there
is an arc leaving i2, and node i is not a source, there has to be a relay installed at i.

These constraints benefit from the fact that the (CUT) model uses only one set of variables
to ensure connectivity in the communication graph. They are particularly effective if the big-M
constants are small, e.g., if only a single source node exists. These constraints turned out to
be beneficial not only for strengthening the LP relaxation of the (CUT) model, but also for
improving the convergence concerning the dynamically separated inequalities.

4 Algorithmic Framework
We developed branch-price-and-cut (BPC) algorithms for the MILP formulations described in
the previous section, see Table 1 for a summary. In the following, after providing some remarks
on preprocessing that aims to reduce the size of the problem instances, we present additional
details (including separation and pricing procedures) of these algorithms.

4.1 Preprocessing
Recall that at the beginning, we remove all edges e ∈ E such that de > dmax. If graph G
separates into several connected components, and there exists a pair (u, v) ∈ K such that u
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and v belong to different components, then the instance is clearly infeasible. Note that if the
problem admits a feasible solution and it contains more than one connected component, every
component describes a separate problem instance that can be solved independently. Next, we
identify and remove all pairs in K that can be connected using solely free edges from E0 and no
relays (this can be easily done by applying shortest path algorithms on (V,E0)).

For the separation procedures explained in Section 4.3, few commodities with many targets
per source are preferable. To this end, we use the fact that commodity pairs can be reordered
because in an undirected graph the existence of a feasible u, v-walk implies the existence of a
feasible v, u-walk. We heuristically reorder the commodities as follows. First, we compute for
each node the number of times it appears in a commodity pair. Then, we iteratively choose
the node i with the highest count (breaking ties by node index), reorder the commodity pairs
involving i by setting i to be the source, and decrease the counts of all nodes by the number
of times i is involved in an associated commodity. The procedure is repeated until the count of
every node becomes zero.

4.2 Column Generation
We use column generation to deal with the exponential amount of path variables used in the
considered models. The paths we are looking for correspond to the edges of the communication
graph. Due to Property 3, these edges correspond to loop-free paths between a pair of nodes
i and j , b = {i, j}. More precisely, for each b ∈ C∗, its reduced costs, denoted by Rb, are
calculated as

Rb = min
p∈P (b)

∑

e∈E∗∩p
αeb −B

where the value of the constant B depends on the considered formulation and is given in Table 1.
As already mentioned, for each b ∈ C∗, this pricing subproblem is a WCSPP defined on the

graph G = (V,E) with non-negative edge weights ωe = de, for all e ∈ E and non-negative edge
costs γe = αeb if e ∈ E∗ and γe = 0, otherwise. The goal is to find a path in G connecting a node
pair b = {i, j}, that minimizes the sum of edge costs and whose weight does not exceed dmax.

In our implementation we add one variable corresponding to a least cost path for each
b ∈ C∗ in each pricing iteration if it has negative reduced costs. This decision to add at most
|C∗| variables in each iteration is based on preliminary experiments indicating that this strategy
outperforms other options such as adding only a single variable in each iteration.

Initial set of Columns. We initially add a set of variables ensuring that there exists
a feasible solution to the LP relaxation. To this end, we add a variable corresponding to a
connection with minimal length for each b ∈ C∗. Such a connection can easily be found with
Dijkstra’s algorithm (see Dijkstra 1959) using the edge lengths as costs.

Solving the Pricing Subproblems. The WCSPP on a graph with nonnegative edge
costs is a weakly NP-hard problem for which fast pseudo-polynomial exact algorithms are avail-
able. For the implementation in our models we use the generic resource-constrained shortest
path algorithm from the Boost Graph Library (BGL) in version 1.63.0, see BGL. To speed up
performance we prevent path expansions leading to costs larger than or equal to B since such
paths can never result in negative reduced costs.

4.3 Separation
Depending on the formulation, up to three different families of exponentially-sized constraints
can be considered. We separate the three classes in the following order: (i) undirected cut-set
inequalities (16) on the original graph, (ii) directed cut-set inequalities (17) on the original
graph, and (iii) cut-set inequalities (10) on the communication graph (for the (CUT) model).
Only if no violated inequalities of previous classes can be found, we continue with the next class.
Violated inequalities of all three classes are identified by maximum flow computations according
to the commodity pairs using the algorithm by Cherkassy and Goldberg (1995). Thereby, the
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edge (or arc) capacities are set to the current LP solution values plus a small value in order to
prefer sparse cuts, i.e., those that contain the fewest edges or arcs, respectively. In case of ties,
we always choose a cut that is closest to the target node. To avoid adding too many cuts we
only consider inequalities that are violated by a value of at least 0.5.

Connectivity in the Original Graph.
As noted in Section 3.4.1, directed cuts on the original graph are stronger than their undirected
counterpart for commodity sources that need to be considered to more than one target. There-
fore, if |KT

u | = 1 for some (u, v) ∈ K, we only add undirected cut-set inequalities (16) for this
commodity pair. Otherwise, we add variables zu and consider the directed constraints (17).
That way, we always ensure the strongest variant of the connectivity inequalities while avoiding
unnecessary overhead whenever possible. We note that such a separation strategy also benefits
from the aforementioned reordering of the commodity pairs.

For connectivity cuts based on the original graph, we also consider so-called nested cuts
(see, e.g., Ljubić et al. (2006)): We set the arc capacities of just added cuts to one and repeat
the flow computation to possibly find other violated inequalities. The procedure is continued
until no further violations can be detected. Observe that the capacity updates influence the
subsequent separation steps. To avoid an unwanted bias we consider the commodity pairs in a
random order based on a fixed seed.

Connectivity in the Communication Graph.
Since connectivity constraints (10) on the communication graph are not redundant, their sepa-
ration is not optional, i.e., they need to be applied at least to all integer solutions encountered
during the branch-and-bound procedure. In our implementation, we additionally use these cuts
to cut off fractional solutions, applying the maximum-flow procedures described above.

4.4 Initial Pool of Inequalities
We now shortly summarize the set of valid inequalities that are used to initialize our models.

Cuts in the Original Graph.
As mentioned above, both types of the original graph connectivity cuts are dynamically sepa-
rated. To speed up convergence we add a subset of these inequalities a priori to the model:

∑

a∈δ−(v)

zua = 1 ∀(u, v) ∈ K : |KT
u | > 1, δ(v) ∩ E0 = ∅ (22)

∑

a∈δ−(i)

zua ≤
∑

a∈δ+(i)

zua ∀u ∈ KS : |KT
u | > 1,∀i ∈ V \ (KS ∪ KT), δ(i) ∩ E0 = ∅ (23)

If undirected cuts are separated for at least one commodity pair (i.e., ∃u ∈ KS : |KT
u | = 1), we

also add the following inequalities since each commodity source and target node has at least
one incident edge.

∑

e∈δ(i)

xe ≥ 1 ∀i ∈ V : i ∈ KS ∪ KT, δ(i) ∩ E0 = ∅ (24)

Similarly, we know that relays are never isolated. Thus, we add the following type of inequalities
to (MCF):

∑

e∈δ(i)

xe ≥ yi ∀i ∈ V : i /∈ KS ∪ KT, δ(i) ∩ E0 = ∅ (25)

Equivalent constraints are considered for the (CUT) model by replacing yi by X(i1,i2).
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Cuts in the Communication Graph.
We add all constraints from Section 3.4.2 a priori to model (CUT), extended by the following
inequalities that ensure that each target has at least one incoming arc and each source has at
least one outgoing arc.

∑

a∈δ−(v1)

Xa ≥ 1 ∀v ∈ KT

∑

a∈δ+(u2)

Xa ≥ 1 ∀u ∈ KS

4.5 Heuristic
Feasible NDPR solutions and initial upper bounds for our algorithms are obtained by using
heuristic (CH1) originally introduced in Cabral et al. (2007). Its basic idea is to iteratively
compute a solution by solving the problem for the individual commodities. In each iteration all
previously added augmenting edges and relays are assigned zero costs. In our implementation we
perform ten runs of (CH1) in which we vary the order in which the commodities are considered
(fixed seed random order) and finally adopt the best solution found. Columns required to
represent the respective solution are added to the initial formulation.

For each commodity (i.e., in each iteration) we need to solve the minimum cost path problem
with relays (MCPPR). Our implementation uses a variant of the pseudo-polynomial dynamic
programming algorithm introduced by Laporte and Pascoal (2011). Their algorithm for the
MCPPR solves the problem on a directed graph. In the undirected variant we need to make
sure that, once an edge has been traversed in one direction, using it in the other direction incurs
no additional costs. The simplest way of handling this is to augment the dynamic programming
states by a set of already used edges, see Algorithm 4.1 for the adjusted pseudocode. Each
state is a tuple of the form x = (πc

x, π
d
x, ξx, vx, E

∗
x) where πc

x denotes the cost of the current
walk, πd

x the distance from the last relay or the starting node along the walk, ξx a reference to
the preceding state, vx the final node of the walk, and E∗x the set of already traversed edges.
As suggested in Laporte and Pascoal (2011), the list of states L is ordered according to non-
decreasing cost to allow for early termination once a state containing the target node as final
node is reached.

After the ten runs of (CH1) we perform a final run for which we set the costs of all relays
and edges selected by the best solution to zero. The idea behind this run is to remove possible
redundancies with respect to the selected relays and edges. Thereby, it is important to break
ties regarding the ordering of L by prioritizing states with smaller πd

x. We denote the modified
algorithm by (CH1+).

4.6 Solver Configuration
Our algorithms are implemented in C++ using SCIP 3.2.1 (see Gamrath et al. 2016) as branch-
price-and-cut framework and CPLEX 12.6.3 as LP solver. The dual simplex method has been
used for solving the LP relaxations as it outperformed other options (primal simplex, barrier)
in preliminary experiments. All experiments have been performed in single thread mode with
presolving, probing, and the solvers general purpose heuristics turned on. General purpose
cutting planes have been deactivated.

5 Computational Study
In this section we first give details on benchmark instances which are then used to compare
the performance of the developed branch-price-and-cut algorithms and to demonstrate their
advantages and drawbacks.
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Input: Graph G = (V,E, c, w, d), E = E0 ∪ E∗, pair (s, t) ∈ K
Data: Mdi ... cheapest path to i at distance d, L ... set of unexpanded states

1 L← {(0, 0,NULL, s, ∅)}
2 forall d ∈ {0, . . . , dmax}, i ∈ V do Mdi ← NULL
3 while L 6= ∅ do
4 select first x ∈ L and remove it from L
5 forall {vx, j} ∈ δ(vx) do
6 d̂← πd

x + d{vx,j} // arrival distance at j

7 if d̂ ≤ dmax then
8 ĉ← πc

x // cost at j
9 if {vx, j} /∈ E0 ∪ E∗x then ĉ← ĉ+ w{vx,j}

10 Ê∗ ← E∗x ∪ ({vx, j} ∩ E∗) // traversed augmenting edges at j
11 if j 6= t ∧ (M0j = NULL ∨ ĉ+ cj < πc

M0j
) then // expansion with relay at j

12 M0j ← (ĉ+ cj , 0, x, j, Ê∗)
13 L← L ∪ {M0j}
14 end
15 if Md̂j = NULL ∨ ĉ < πc

Md̂j
then // expansion without relay at j

16 Md̂j ← (ĉ, d̂, x, j, Ê∗)
17 L← L ∪ {Md̂j}
18 end
19 end
20 end
21 end
22 return arg minx∈Mdt:0≤d≤dmax π

c
x

Algorithm 4.1: Dynamic programming algorithm for the minimum connected path problem
with relays in an undirected graph

5.1 Benchmark Instances
We consider three groups of benchmark instances: 1) instances from Cabral et al. (2007), 2)
instances introduced by Konak (2012), and 3) an entirely new set of instances (ARLP), generated
to reflect some of the real-world properties not covered by the previous two families.

Cabral instances.
These instances have been introduced by Cabral et al. (2007), see Table 2 for an overview.
They are extremely sparse 4-grid graphs in which each node is connected only to its direct
vertical and horizontal neighbors. All edges have costs greater than zero (i.e., E0 = ∅) and the
maximum distance is equal to 70 for all instances. There are 180 instances in this family: for a
fixed input graph and the given number of commodities, 10 instances are generated by sampling
the set of commodities. All commodities share one node, i.e., we can reorder them such that
|KS| = 1. The number of nodes varies between 20 and 60. Although |K| ∈ {5, 10}, we point out
that for some instances the “effective” number of commodities is smaller than specified by the
instance. This is due to two reasons. First, some instances contain the same commodity more
than once. Second, some instances contain commodities for which the source and target are
identical. Since commodities of this type are trivially connected by the empty path, we simply
ignore them. Column |K| in Table 2 reports the average number of effective commodity pairs.

Konak instances.
These instances which were generated by randomly placing and connecting nodes on a grid were
originally introduced by Konak (2012). The number of nodes varies between 40 and 160. The
length of each edge {i, j} is set to the Euclidean distance between i and j while its cost is either
set equal to the edge length (type I) or to dmax − d{i,j} (type II). The basic instance properties
(|V |, |E0|, |E∗|, |K|, and dmax) are shown in Tables 3 and 4. Instances with an identical number
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of nodes and the same dmax are based on the same graph and only the number of commodities
differs. There are 40 instances in total, 20 of each type. Notice that also for this family of
instances, the number of commodities is extremely low (|K| ∈ {5, 10}). In some instances free
edges are present but their number is always rather small.

ARLP instances.
This newly generated set of benchmark instances is intended to complement the previous two
sets available from the literature. Both, Cabral and Konak instances assume |K| ∈ {5, 10}. On
the contrary, ARLP instances aim to simulate applications where many node pairs needs to
communicate. We refer to this set as augmented RLP (ARLP) instances since we require all
nodes to communicate with each other, as it is the case for the RLP (cf. Section 1.2). In contrast
to the RLP, the set of augmenting edges E∗ is not empty, and in contrast to the Konak and
Cabral instances, a significant number of zero cost edges exists.

The instances have been generated as follows. Nodes are placed randomly on a 100 × 100
grid and edges with length equal to the Euclidean distance (rounded up) between two nodes
are added whenever this distance does not exceed 30. Each edge is chosen to be a free edge
with probability 20, 50, or 80 % in instance subsets 20F, 50F, and 80F, respectively. The costs
wij of augmenting edges {i, j} are chosen randomly according to a normal distribution with
parameters µ = dij , σ = 5 (rounded up). Relay costs are chosen randomly according to the
normal distribution µ = 10 · w̄, σ = 20 (rounded up) where w̄ denotes the average costs of
augmenting edges. Finally, dmax = 50 for all instances and K contains all pairs that cannot be
connected using solely free edges, i.e., K = {(u, v) | (u, v) ∈ V ×V, u < v}\C0 (see Section 4.1).

In addition, a second set of instances (denoted as ARLP-p25) with a smaller number of
commodities has been created. Each such instance is generated from an ARLP instance by
adopting each commodity with a probability of 25 %. The main characteristics of sets ARLP
and ARLP-p25 are summarized in Tables 5 and 6, respectively. The instances are already
preprocessed, in the sense that our preprocessing procedures do not apply. Especially, we
only consider instances that are connected, i.e., they consist of a single connected component.
Furthermore, we define the set K so that commodity pairs that can be connected only using
free edges and without relays are not included.

The ARLP and the ARLP-p25 instance sets are available at https://www.ac.tuwien.ac.
at/research/problem-instances/#Network_Design_Problem_with_Relays.

5.2 Computational Results
Test results reported in this section have been obtained on an Intel Xeon E5540 machine with
2.53 GHz. The computing time limit has been set to 7200 seconds and the memory limit to
8 GB RAM. As discussed in Section 4.3 we use a violation threshold of 0.5 when separating
strengthening inequalities. This threshold is only considered when solving the problem to integer
optimality. When reporting LP bounds in this section, we add all violated inequalities. This
means that independent experiments are conducted for the two cases. This leads to situations
in which the integer run finds an optimal solution but the LP run terminates due to the time
or the memory limit as a result of excessive separation of cutting planes. Conversely, it is also
possible that the LP gap is tighter than the final optimality gap of the integer run if the latter
cannot progress fast enough.

Tables 2–6 summarize the results. Both models (MCF) and (CUT) are compared with
respect to the LP relaxation gap (LP Gap [%]), the final optimality gap (Opt. Gap [%]), the
used computing time (t [s]), and the number of priced columns (Columns). LP and optimality
gaps are computed as 100 · UB∗−LB

UB∗ where UB∗ is the best known upper bound and LB is the
lower bound obtained by the respective algorithm. The upper bounds shown in the tables in
the column UB∗ are printed bold iff the given value is shown to be the optimal objective value
by any of the considered algorithms. Entries marked with “ML” indicate that an experiment
has been terminated due to the memory limit. Furthermore, for some of the most challenging
instances it was impossible to obtain a lower bound within the imposed time limit. In these
cases the LP or optimality gap cannot be computed and respective fields are marked with “TL”.
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LP IP
Gap [%] Opt. Gap [%] t [s] Columns

Instance |V | |E∗| |K| (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)
4A5B70L5K 20 31 4.5 100.2 0.7 0.7 0.0 0.0 < 1 < 1 21 24
4A5B70L10K 20 31 7.9 103.8 1.4 1.2 0.0 0.0 1 1 34 51
5A5B70L5K 25 40 4.2 105.0 1.6 1.4 0.0 0.0 1 < 1 34 39
5A5B70L10K 25 40 8.5 105.7 1.6 1.5 0.0 0.0 1 1 49 70
6A5B70L5K 30 49 4.7 101.3 0.6 0.2 0.0 0.0 1 1 48 50
6A5B70L10K 30 49 8.8 102.1 2.0 1.5 0.0 0.0 4 3 78 102
7A5B70L5K 35 58 4.5 101.6 1.4 1.2 0.0 0.0 1 2 57 50
7A5B70L10K 35 58 8.4 102.3 2.1 1.7 0.0 0.0 6 5 98 115
8A5B70L5K 40 67 4.7 103.3 1.6 1.2 0.0 0.0 4 3 90 73
8A5B70L10K 40 67 8.9 106.0 2.9 2.6 0.0 0.0 11 7 127 142
9A5B70L5K 45 76 4.8 105.3 1.3 1.3 0.0 0.0 4 2 88 66
9A5B70L10K 45 76 9.0 105.3 2.4 1.9 0.0 0.0 19 8 176 158
10A5B70L5K 50 85 5.0 103.5 2.2 1.6 0.0 0.0 8 7 127 111
10A5B70L10K 50 85 9.4 104.3 2.4 2.3 0.0 0.0 32 14 210 184
11A5B70L5K 55 94 4.6 100.8 1.9 1.8 0.0 0.0 5 4 103 86
11A5B70L10K 55 94 9.1 105.7 1.3 0.4 0.0 0.0 45 11 242 170
12A5B70L5K 60 103 4.7 104.7 1.2 0.8 0.0 0.0 9 8 142 114
12A5B70L10K 60 103 9.0 103.0 3.9 2.6 0.0 0.0 179 26 357 252

Table 2: Results on the Cabral instances. Column |K| reports the average number of effective
commodity pairs. (CH1+) gives the ratio between the objective value obtained by the heuristic
and the best known upper bound. We report the LP gap, the optimality gap, the total computing
time in seconds (t [s]), and the number of priced columns. Each row reports a mean value over a
set of ten instances. Best values are marked bold.

Finally, for the heuristic (CH1+) we report the percentage increase with respect to the best
known upper bound given by 100 · UBH

UB∗ where UBH is the objective value obtained by (CH1+).

5.2.1 Cabral instances
Mean values of the computational results obtained for instances from set Cabral are provided
in Table 2. Each row corresponds to ten instances for the given instance graph and the number
of commodities.

We first notice that both algorithms provide very small LP gaps, with the gaps from (CUT)
being consistently smaller than those from (MCF). This can be explained by the fact that the
big-M coefficients in inequalities (20) are equal to one since all commodities have the same
source in this instance set. This advantage concerning the quality of LP bounds carries over
to the integral runs leading to significantly smaller computing times for the (CUT) model.
Both models require a comparable number of columns to solve the instances to optimality. In
general, the number of priced columns is rather low, which can be explained by the sparsity of
the considered input graphs.

Our results constitute a clear improvement compared to the results reported by Cabral
et al. (2007) where these instances have been introduced. Whereas Cabral et al. (2007) provide
only heuristic solutions with relatively large optimality gaps (with up to 20 % with respect to
their best-performing arc-path based formulation), we are able to solve all instances to provable
optimality—in most cases within a few seconds only. Moreover, our (CUT) formulation features
very small LP gaps that range between 0.2 % and 2.6 % on these instances.
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5.2.2 Konak instances
In contrast to the Cabral instances, for this data-set, the number of targets per given source
does not exceed two (and is usually only one). Hence, the structure of optimal solutions on the
communication graph is less arborescence-like, it is rather an intersection of multiple source-
target walks. In Tables 3 and 4 we compare the performance of the proposed exact approaches
for instances of type I and type II, respectively. We report the LP gaps, the final optimality
gaps, the overall computing times and the numbers of priced columns. Among the instances of
type I and II, 11 out of 20 and 18 out of 20 are solved to optimality, respectively. Interestingly,
it turns out that instances with edge lengths equivalent to the costs (type I) are significantly
harder to solve for our algorithms than those where edge costs and edge lengths are inversely
correlated (type II).

Konak Type I. We first compare the LP gaps reported in Table 3. Considering only those
cases when both algorithms are able to finish the computation of the LP bound, we observe
that the gaps of both formulations are the same. This is not surprising since the benefits of
inequalities (20) diminish due to multiple source and target nodes in each instance. In general,
these instances are much harder to solve for our algorithms than those from the Cabral set. The
main reason is that the graphs are much denser which leads to higher separation and pricing
efforts.

The performance for the complete runs (until finding an optimal integer solution or reaching
the time limit) is consistent with the LP bound results. While the majority of instances with
at most 60 nodes could be solved by both algorithms, the final optimality gaps are quite large
for instances with 80 and more nodes. Both algorithms feature similar computing times with a
slight advantage for the (MCF) model. The main advantage of the (CUT) formulation is that
it can provide bounds for all instances. The (MCF), on the other hand, cannot provide bounds
for the two most difficult instances within the time limit of two hours. We observe that our
algorithms improve the initial upper bounds received from the heuristic (reported in the column
(CH1+)) for all but two instances with 80 nodes and the instances with 160 nodes.

Konak Type II. The results shown in Table 4, compared with those obtained for instances
of type I, clearly indicate that for our algorithms type II instances are easier to solve than the
type I instances. The above discussed relation between the two approaches remains roughly the
same, both regarding the quality of the LP gaps and the overall performance. In total 18 out
of 20 instances of this group could be solved to optimality by the (MCF), three more than by
the (CUT) model. The LP gaps are much smaller than for the type I instances and for two
instances the LP gap is even zero. The upper bounds obtained from (CH1+) have been shown
to be optimal by our algorithms in two cases and have been improved by them for all remaining
ones except the largest one (160N 10K 35L).

5.2.3 ARLP instances
Recall that the Cabral and Konak instances contain very few commodities and almost no free
edges. The influence of the ratio of free edges to augmenting edges on the proposed approaches
as well as the influence of a larger number of commodities is therefore investigated on the set
of ARLP instances. Results obtained for the ARLP instances and all considered percentages
of free edges (20 %, 50 %, or 80 % of all available edges) are provided in Table 5. It is not
surprising that the most difficult instances are those with only 20 % free edges and that the
instances become significantly easier to solve with an increasing number of free edges. Notice
that, due to the huge number of commodities, the model (MCF), which performed quite well
on the other two data-sets, can now only deal with the smallest instances with 40 nodes and
some instances with 50 nodes. For larger instances, (MCF) always hits the memory limit, due
to its excessive size. Clearly, using the (CUT) model greatly helps to overcome this issue.

As before, (MCF) provides the same LP gaps as (CUT) whenever both models manage
to terminate within the time limit. The ARLP instances are more challenging for the (CUT)
model as well. This can be explained by the excessive number of cuts that need to be generated,
especially for the calculation of LP bounds, where no violation threshold is used. Moreover,
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LP Gap [%] Opt. Gap [%] t [s] Columns
Instance |V | |E0| |E∗| |K| dmax UB∗ (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)
40N 5K 30L 40 0 198 5 30 473.80 102.7 11.9 11.9 0.0 0.0 16 27 299 227
40N 5K 35L 40 0 272 5 35 352.08 102.7 21.0 21.0 0.0 0.0 1173 533 1012 767
40N 10K 30L 40 0 198 10 30 518.98 108.2 15.9 15.9 0.0 0.0 180 152 401 421
40N 10K 35L 40 0 272 10 35 399.36 112.3 23.1 23.1 6.6 8.0 7200 7200 1043 1027
50N 5K 30L 50 0 279 5 30 283.79 120.3 0.0 0.0 0.0 0.0 1 5 232 186
50N 5K 35L 50 0 372 5 35 260.24 100.0 1.2 1.2 0.0 0.0 6 27 565 499
50N 10K 30L 50 0 279 10 30 540.39 103.8 13.0 13.0 0.0 0.0 158 411 540 557
50N 10K 35L 50 0 372 10 35 404.32 111.9 11.8 11.8 0.0 0.0 204 261 1177 1307
60N 5K 30L 60 0 305 5 30 509.12 103.2 21.5 21.5 0.0 0.0 39 70 509 541
60N 5K 35L 60 0 412 5 35 377.02 105.8 10.9 10.9 0.0 0.0 48 94 939 1146
60N 10K 30L 60 0 305 10 30 678.84 107.0 24.4 24.4 0.0 0.0 886 1063 703 730
60N 10K 35L 60 0 412 10 35 499.64 112.9 19.0 19.0 0.0 0.0 891 1400 1498 1520
80N 5K 30L 80 0 641 5 30 353.86 105.2 15.7 15.7 9.1 10.0 7200 7200 3887 3784
80N 5K 35L 80 0 853 5 35 334.21 103.2 19.9 TL 16.1 16.7 7200 7200 9110 8394
80N 10K 30L 80 0 641 10 30 513.02 100.0 36.7 TL 32.0 35.2 7200 7200 3613 3815
80N 10K 35L 80 0 853 10 35 516.91 100.0 43.0 TL 44.4 42.2 7200 7200 6952 8592
160N 5K 30L 160 3 2770 5 30 298.31 100.0 29.7 TL 29.6 28.2 7200 7200 15941 23489
160N 5K 35L 160 3 3621 5 35 314.52 100.0 TL 37.0 58.1 37.2 7200 7200 20303 30877
160N 10K 30L 160 3 2770 10 30 470.54 100.0 TL TL TL 44.1 7200 7200 11229 23027
160N 10K 35L 160 3 3621 10 35 484.97 100.0 TL TL TL 50.2 7200 7200 11872 36042

Table 3: Results on the Konak instances (type I). Column UB∗ provides the best known upper
bounds, optimal bounds are marked bold. (CH1+) gives the ratio between the objective value
obtained by the heuristic and the best known upper bound. We report the LP gap, the optimality
gap, the total computing time in seconds (t [s]), and the number of priced columns. Best values are
marked bold. If an algorithm failed to compute a lower bound due to the time limit, the respective
gap entry is marked with “TL”.

LP Gap [%] Opt. Gap [%] t [s] Columns
Instance |V | |E0| |E∗| |K| dmax UB∗ (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)
40N 5K 30L 40 1 197 5 30 247.27 100.1 0.0 0.0 0.0 0.0 < 1 1 111 80
40N 5K 35L 40 0 272 5 35 111.30 101.7 7.1 7.1 0.0 0.0 9 17 459 314
40N 10K 30L 40 1 197 10 30 292.62 100.1 4.4 4.4 0.0 0.0 13 18 293 267
40N 10K 35L 40 0 272 10 35 140.51 101.0 7.7 7.7 0.0 0.0 61 45 690 625
50N 5K 30L 50 1 278 5 30 119.80 100.0 0.0 0.0 0.0 0.0 < 1 1 98 104
50N 5K 35L 50 0 372 5 35 155.57 105.2 1.0 1.0 0.0 0.0 2 33 422 547
50N 10K 30L 50 1 278 10 30 279.70 100.6 2.0 TL 0.0 0.0 3 28 247 432
50N 10K 35L 50 0 372 10 35 206.22 102.1 1.6 TL 0.0 0.0 32 127 828 1303
60N 5K 30L 60 3 302 5 30 317.32 104.0 14.2 14.2 0.0 0.0 7 26 337 444
60N 5K 35L 60 0 412 5 35 166.35 100.0 0.0 0.0 0.0 0.0 < 1 3 315 446
60N 10K 30L 60 3 302 10 30 414.32 120.4 12.2 12.2 0.0 0.0 52 88 444 583
60N 10K 35L 60 0 412 10 35 242.32 100.1 5.2 5.2 0.0 0.0 21 53 748 1016
80N 5K 30L 80 2 639 5 30 134.73 108.6 4.9 4.9 0.0 0.0 32 167 1455 1705
80N 5K 35L 80 1 852 5 35 104.04 100.4 2.0 2.0 0.0 0.0 46 306 2307 2899
80N 10K 30L 80 2 639 10 30 187.17 105.0 8.1 8.1 0.0 0.0 695 625 2756 2501
80N 10K 35L 80 1 852 10 35 168.62 102.2 11.2 TL 0.0 12.9 4382 7200 7947 9114
160N 5K 30L 160 9 2764 5 30 78.61 106.2 6.6 6.6 0.0 4.2 1491 7200 12812 23985
160N 5K 35L 160 9 3615 5 35 68.15 101.4 9.0 9.0 0.0 6.7 5273 7200 29676 30003
160N 10K 30L 160 9 2764 10 30 112.06 106.1 6.5 TL 5.7 11.6 7200 7200 16850 26344
160N 10K 35L 160 9 3615 10 35 117.19 100.0 TL TL 10.3 33.4 7200 7200 22324 34909

Table 4: Results on the Konak Instances (type II). Column UB∗ provides the best known upper
bounds, optimal bounds are marked bold. (CH1+) gives the ratio between the objective value
obtained by the heuristic and the best known upper bound. We report the LP gap, the optimality
gap, the total computing time in seconds (t [s]), and the number of priced columns. Best values are
marked bold. If an algorithm failed to compute a lower bound due to the time limit, the respective
gap entry is marked with “TL”.
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the effects of the connectivity cuts in the original graph diminish on this data-set, due to the
presence of a substantial number of free edges. Overall, (CUT) is clearly the best-performing
model for this data-set. It is able to find optimal solutions for 22 out of 24 instances. The
(MCF) model, on the other hand, manages to solve only six instances to optimality. As for
the other instance sets, the upper bounds obtained from (CH1+) are improved for almost all
instances by our algorithms which only fail to improve them for one of the most challenging
problems (80N50L20F A) and prove optimality of one solution obtained by (CH1+).

LP Gap [%] Opt. Gap [%] t [s] Columns
Instance |V | |E0| |E∗| |K| UB∗ (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)
40N50L20F A 40 26 124 724 874 122.5 TL 10.7 TL 0.0 7200 142 132 1340
40N50L20F B 40 35 123 688 874 113.3 TL 13.4 TL 0.0 7200 139 147 1196
40N50L50F A 40 89 78 513 837 103.9 15.2 15.2 0.0 0.0 2504 14 59 83
40N50L50F B 40 71 72 586 876 108.3 6.4 6.4 0.0 0.0 2683 7 76 74
40N50L80F A 40 146 32 443 516 100.0 0.0 0.0 0.0 0.0 10 2 1 0
40N50L80F B 40 154 35 423 777 100.9 6.6 6.6 0.0 0.0 155 5 18 23
50N50L20F A 50 44 212 1111 815 106.5 TL 5.9 ML 0.0 ML 416 ML 3973
50N50L20F B 50 59 235 1022 656 131.2 TL 2.8 ML 0.0 ML 72 ML 3032
50N50L50F A 50 132 157 719 543 104.4 9.6 TL ML 0.0 ML 11 ML 114
50N50L50F B 50 117 132 873 775 100.8 TL 5.8 ML 0.0 ML 30 ML 211
50N50L80F A 50 175 51 788 630 143.8 11.1 TL 0.0 0.0 211 10 25 7
50N50L80F B 50 212 58 682 572 119.2 0.0 0.0 0.0 0.0 29 5 1 0
60N50L20F A 60 72 269 1549 775 111.1 ML 5.5 ML 0.0 ML 257 ML 3685
60N50L20F B 60 63 268 1588 976 129.7 ML 17.8 ML 0.0 ML 1397 ML 3725
60N50L50F A 60 216 204 1036 628 115.8 TL ML ML 0.0 ML 44 ML 201
60N50L50F B 60 197 200 1103 743 103.0 TL ML ML 0.0 ML 58 ML 255
60N50L80F A 60 311 85 854 503 119.7 2.1 TL ML 0.0 ML 16 ML 16
60N50L80F B 60 283 74 1041 624 110.1 9.9 ML ML 0.0 ML 18 ML 4
80N50L20F A 80 123 525 2729 1084 100.0 ML 35.1 ML 34.0 ML 7200 ML 19111
80N50L20F B 80 124 545 2659 790 125.8 ML TL ML 9.6 ML 7200 ML 21190
80N50L50F A 80 335 342 1916 498 120.9 ML ML ML 0.0 ML 65 ML 71
80N50L50F B 80 366 375 1902 541 135.5 ML TL ML 0.0 ML 159 ML 424
80N50L80F A 80 548 148 1834 577 101.4 ML ML ML 0.0 ML 67 ML 5
80N50L80F B 80 597 158 1532 549 159.2 ML ML ML 0.0 ML 85 ML 4

Table 5: Results on the ARLP instances. Column UB∗ provides the best known upper bounds,
optimal bounds are marked bold. (CH1+) gives the ratio between the objective value obtained by
the heuristic and the best known upper bound. We report the LP gap, the optimality gap, the total
computing time in seconds (t [s]), and the number of priced columns. Best values are marked bold.
Entries marked with “ML” indicate that an experiment has been terminated due to the memory
limit. If an algorithm failed to compute a lower bound due to the time limit, the respective gap
entry is marked with “TL”.

ARLP-p25 instances. The purpose of evaluating our algorithms on this family of instances
was to study the influence of the number of commodities to the algorithmic performance. Recall
that for the ARLP instances, each node pair is a commodity, i.e., |K| is in O(|V |2). For the
ARLP-p25 instances, the number of commodities is reduced to a quarter. In general, the results
indicate that as long as the number of commodities remains O(|V |2), the NDPR is much more
difficult to solve than when the number of commodities is fixed to a small constant value (as this
was the case for the Cabral and the Konak instances). Moreover, the remaining commodities
still enforce solutions that guarantee full connectivity since the optimal objective values do not
change for the corresponding instances. The detailed results are provided in Table 6.

Again, the LP gaps of both models are the same whenever both of them terminated within
the time limit. However, this time more LP bounds have been obtained due to the smaller
number of commodities. The quality of the bounds is roughly comparable to those of the ARLP
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LP Gap [%] Opt. Gap [%] t [s] Columns
Instance |V | |E0| |E∗| |K| UB∗ (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)
40N50L20F A p25 40 26 124 181 874 119.2 11.4 11.4 11.7 0.0 7200 106 499 1429
40N50L20F B p25 40 35 123 172 874 102.7 14.6 14.6 11.2 0.0 7200 109 529 1238
40N50L50F A p25 40 89 78 129 837 102.2 15.2 15.2 0.0 0.0 152 10 58 81
40N50L50F B p25 40 71 72 147 876 104.8 6.4 6.4 0.0 0.0 112 3 80 96
40N50L80F A p25 40 146 32 111 516 100.0 0.0 0.0 0.0 0.0 2 1 2 0
40N50L80F B p25 40 154 35 106 777 100.9 6.6 6.6 0.0 0.0 20 2 16 22
50N50L20F A p25 50 44 212 278 815 106.0 TL 6.1 TL 0.0 7200 611 572 4396
50N50L20F B p25 50 59 235 256 656 122.0 TL 2.8 TL 0.0 7200 209 547 4256
50N50L50F A p25 50 132 157 180 543 112.0 9.6 9.6 0.0 0.0 179 5 142 153
50N50L50F B p25 50 117 132 219 775 100.0 5.8 5.8 0.0 0.0 4431 11 273 184
50N50L80F A p25 50 175 51 197 630 124.0 11.1 11.1 0.0 0.0 26 2 17 3
50N50L80F B p25 50 212 58 171 572 119.2 0.0 0.0 0.0 0.0 6 1 1 3
60N50L20F A p25 60 72 269 388 775 116.3 TL 5.5 TL 0.0 7200 2174 366 4904
60N50L20F B p25 60 63 268 397 976 126.0 TL 18.4 TL 0.0 7200 4412 343 4037
60N50L50F A p25 60 216 204 259 628 115.8 8.0 TL 0.0 0.0 6777 46 220 237
60N50L50F B p25 60 197 200 276 743 122.3 8.5 8.5 4.7 0.0 7200 45 242 360
60N50L80F A p25 60 311 85 214 503 148.7 2.1 2.1 0.0 0.0 125 7 25 24
60N50L80F B p25 60 283 74 261 624 124.5 9.9 9.9 0.0 0.0 81 16 15 14
80N50L20F A p25 80 123 525 683 1095 100.0 TL 35.8 ML 33.9 ML 7200 ML 19296
80N50L20F B p25 80 124 545 665 1024 100.0 TL TL ML 35.4 ML 7200 ML 21959
80N50L50F A p25 80 335 342 479 498 120.9 1.1 TL 0.0 0.0 1890 28 155 193
80N50L50F B p25 80 366 375 476 541 141.6 TL TL TL 0.0 7200 181 224 538
80N50L80F A p25 80 548 148 459 577 100.2 2.6 TL 0.0 0.0 826 40 17 14
80N50L80F B p25 80 597 158 383 549 132.1 9.7 TL 0.0 0.0 1580 55 13 12

Table 6: Results on the ARLP-p25 instances. Column UB∗ provides the best known upper bounds,
optimal bounds are marked bold. (CH1+) gives the ratio between the objective value obtained by
the heuristic and the best known upper bound. We report the LP gap, the optimality gap, the total
computing time in seconds (t [s]), and the number of priced columns. Best values are marked bold.
Entries marked with “ML” indicate that an experiment has been terminated due to the memory
limit. If an algorithm failed to compute a lower bound due to the time limit, the respective gap
entry is marked with “TL”.

instances. The number of optimal solutions found does not change when reducing the number
of commodities, i.e., optimal solutions have been found for 22 out of 24 instances. For the
(MCF) the number of instances solved to optimality greatly increases from 6 to 14, mainly
due to the smaller number of commodities reducing the size of the model. Surprisingly, the
impact on the algorithmic performance of (CUT) is much smaller. In fact, in several cases the
reduced instances are even harder to solve. As mentioned above the optimal solutions remain
the same as for the original instances. Therefore, we “loose” constraints that might help to
prove optimality earlier. This is particularly relevant to the (CUT) model where the number
of variables is independent of the number of the commodity pairs. As before, one solution
obtained from (CH1+) is shown to be optimal and all but one of the remaining upper bounds
from (CH1+) are improved by our approaches.

Sensitivity Analysis.
The number of feasible walks realizing a connection of some commodity pair depends on the
distance limit in relation to the edge lengths. More specifically, it depends on the average
number of edges that can be part of a feasible subwalk that uses no relays. In the following, we
want to investigate the effect of this characteristic on our algorithms. To this end, we consider
the Cabral instances and vary the distance limit dmax.

The unmodified Cabral instances feature a distance limit of 70 and the edge lengths are
chosen uniformly at random from the interval [10, 30]. Therefore, a feasible walk of maximal
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Figure 10: Sensitivity analysis regarding the distance maximum dmax on the Cabral instances for
the (CUT) model. Each box considers 180 instances. Both box plots use a logarithmic scale.

length consists on average of three to four edges. Increasing dmax by a value of 30 means that
a feasible walk without relays may contain at least one additional edge. We consider distance
limits between 40 and 220 in steps of 30 for our experiment. The results are visualized in terms
of box plots in Figure 10 for the (CUT) model.

Due to the increasing number of possible options for connecting the commodity pairs it can
be expected that the instances become harder to solve as the distance limit increases. This
can be verified in terms of the box plots. However, we can also see that the computing times
increase only moderately. Per step the median computing time rises by roughly one second.
Similarly, the number of columns required to solve an instance to optimality increases. The
respective results obtained with the (MCF) model are quite similar except that the baseline lies
a bit higher. In total, we can conclude that the performance of our algorithms remains quite
robust against changes to the distance limit.

Solution Shape and Characteristics.
In this section, we analyze the structure of optimal solutions for two small examples correspond-
ing to instances 40N30C50L20F A and 40N30C50L80F A from the ARLP set with 20 % and 80 %
of free edges, respectively. In Figures 11a and 12a we visualize the two corresponding optimal
solutions. We notice that for 40N30C50L20F A, despite the fact that there are 724 commodities,
only three relays need to be installed (with a reasonable complement of augmentation edges) to
enable these communications. In Figure 11, we compare the optimal solution of 40N30C50L20F A
with the one obtained for the same input graph, but with a much smaller number of commodi-
ties: the set of commodities K′ is obtained by removing all commodities except those containing
the node that is involved in the fewest commodities. The structure of the obtained optimal
solution is similar to the original one, with three installed relays and a similar number of aug-
mentation edges. Along with the results reported for the ARLP instances, this figure indicates
that the estimated investment costs do not increase linearly with the number of commodities.
In general there are higher investment costs for setting up the infrastructure, and once it is
established, marginal increase in the number of commodities will not be reflected in the increase
of the set-up costs (cf. the solution values in Tables 5 and 6).

Figure 12 visualizes the optimal solutions for 40N30C50L80F A and its “sparser” variant (with
the set of commodities K′ constructed as above), respectively. We observe that when 80 % of
available edges are free, the need to install augmentation edges almost vanishes but a certain
number of relays still needs to be installed to enable communications. Comparing the optimal
solution for the sparser problem with the original one, we notice that the number of relays can
be reduced, if the source node is centrally located, as this is the case in the shown example.
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(a) 40N30C50L20F A (original) (b) 40N30C50L20F A (K′)

Figure 11: Solutions to ARLP instance 40N30C50L20F A with different numbers of commodities.
Solid lines indicate free edges and dashed lines augmenting edges. Selected relays are marked with
triangles. On the right the single source is marked with a square.

(a) 40N30C50L80F A (original) (b) 40N30C50L80F A (K′)

Figure 12: Solutions to ARLP instance 40N30C50L80F A with different numbers of commodities.
Solid lines indicate free edges and dashed lines augmenting edges. Selected relays are marked with
triangles. On the right the single source is marked with a square.
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6 Conclusion
In this work we introduced new MILP formulations for the solution of the NDPR utilizing an
exponential number of variables (and constraints). We proved several conditions and properties
of optimal solutions and revised the concept of communication graphs for the NDPR which are
exploited in our MILP formulations. Two branch-price-and-cut algorithms have been developed.
The first one is based on a multi-commodity flow formulation on an undirected communication
graph whereas the second is based on a cut-set formulation on a directed communication graph.
The computational study on instances from the literature and a newly created set of instances
shows that the cut-set formulation on the directed communication graph has the overall best
performance. The multi-commodity flow formulation on the undirected communication graph
performs reasonably well, but only up to a limited number of nodes and/or commodities. Due
to its excessive number of variables, the latter formulation exhibits serious memory issues that
makes it less appealing for practical applications involving larger graphs or a higher number of
commodities.

We conducted a sensitivity analysis on the Cabral instances with different dmax restrictions.
The results showed that our algorithms are quite robust against changes to this parameter
featuring only a comparatively small increase in computing times and priced columns.

Compared to the previous attempt from the literature to develop an exact model for the
NDPR by Cabral et al. (2007), the main advantage of our modeling approach is that we do not
use variables corresponding to entire walks between commodities (including the decisions for
placing relays). Instead, we consider only simple paths between two consecutive relays, whereas
the decision where to place the relays is modeled through the communication graph. That
way, our pricing draws a computational advantage from the fact that augmenting edges can be
simultaneously shared by multiple commodities. The positive effect of our modeling approach
is striking for instances with many commodities, where the need for the simultaneous reuse of
augmenting edges is even more amplified.

6.1 Future Work
Besides telecommunication network design, the NDPR can be used to answer strategic questions
in the context of electric mobility. A company running its operations based on a fleet of electric
vehicles (EVs), be it a logistics company or an e-car provider, faces a difficult decision problem
of planning the underlying charging infrastructure. Due to expensive EV batteries and their
limited range, a stable and robust charging infrastructure is crucial for running the business
suitably. Since building and/or renting charging stations is expensive, logistic companies or e-
car providers are interested in minimizing the number of charging stations whilst enabling travel
between specific locations (cf. commodities). Furthermore, in some metropolises (including
Stockholm, Gothenburg, and Singapore) congestion taxing or congestion charging mechanisms
are implemented. This means that shorter distances can be traversed (e.g., via shortcuts through
the inner city), but in that case a certain road toll is to be paid (see, e.g., EPASS24, Land
Transport Authority). Similarly, urban freeways passing through a downtown area can be
subject to compulsory electronic toll (like the case in Santiago de Chile, or some Norwegian
cities). Consequently, if a company is interested in building charging stations for its fleet, it also
has to gauge whether toll roads are to be used. When making strategic decisions, costs for toll
roads are typically estimated over a longer planning period and considered as fixed link costs.

Two main strategic design questions arising in this complex decision process are addressed
by the NDPR: Given a family of origin-destination pairs EVs need to travel, and given the
existing links that can be traversed:

1. What are the optimal locations for placing the charging stations and how many of them
are needed?

2. Could the available infrastructure be enhanced by including additional links (shortcuts),
to reduce the travel distances?

The relevance of the NDPR for planning EVs’ charging infrastructure has not been suffi-
ciently acknowledged in the existing literature. This is maybe due to the additional aspects
that need to be taken into account when dealing with e-mobility. These include restricting
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the distance arising from detours necessary for vehicle recharging and the maximum number
of (time-consuming) recharging stops an EV requires before reaching its final destination. Al-
though the NDPR does not consider these additional aspects, there is no doubt that the problem
plays an important role for e-mobility applications for two reasons: (1) NDPR may appear as a
subproblem (i.e., in some decomposition schemes), and (2) the proposed algorithms can be used
to derive heuristic solutions in multiple-phase approaches, where the complex decision process
is approached step-by-step. Hence, the NDPR provides important insights for the companies
running their business with a fleet of EVs. It helps in estimating the initial set-up costs (induced
by the installation of recharging stations and potential purchases of road-toll passes). Moreover,
by using a correlation between the edge lengths and lengths of the trips, the routing decisions
obtained through an NDPR solution implicitly help in estimating a lower bound on the number
of required EVs. Similarly, assuming that all trips will be covered, an upper bound on the
expected profit can be calculated.

Interesting and more difficult NDPR variants that are important directions for future work
include the following aspects: (1) limiting the maximum number of recharging stops (relays)
used by a single commodity, (2) limiting the maximum waiting times imposed by recharging, or
(3) limiting the overall trip length per commodity.
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