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Abstract

This master’s thesis reasons why the Target Set Selection Problem

(TSSP) is of high relevance to research topics of gaining importance.

The impact of graph properties on the complexity of solving the TSSP

is shown. For the case of graphs with arbitrary edge weights, a novel

integer linear programming formulation is established, and it is shown

where the pitfalls of finding target sets in graphs with arbitrary edge

weights are. For instances with different structural features, as well as

for real-world data, solutions have been found and analyzed. One of

the findings is, that even more than the number of nodes, a high graph

density leads to a great increase in calculation time for determining

the solution of the TSSP.



Abstract

Diese Masterarbeit erörtert, warum das Target Set Selection Prob-

lem (TSSP) für Forschungsfelder, die an Bedeutung zunehmen, von

großer Wichtigkeit ist. Der Einfluss von Eigenschaften von Graphen

auf die Komplexität der Lösung des TSSP wird gezeigt. Für den

Fall von Graphen mit beliebigen Kantengewichten wird eine neue

Formulierung der ganzzahligen linearen Optimierung eingeführt und

gezeigt, wo die Tücken beim Finden eines Target Sets im Falle von

Graphen mit beliebigen Kantengewichten sind. Für Instanzen mit un-

terschiedlichen strukturellen Eigenschaften, sowie für reale Datensätze,

wurden Lösungen des TSSP gefunden und analysiert. Eine Erkennt-

nis ist, dass eine hohe Dichte des Graphen, mehr noch als die Anzahl

der Knoten, zu einer hohen Rechenzeit zur Ermittlung der Lösung des

TSSP führt.
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1 Introduction

In a increasingly interconnected world, understanding spreading behavior,

e.g. the propagation of information or in the spread of diseases is gaining

importance. Two global trends are visible in today’s world: An increased in-

terconnectedness between people, institutions and devices and greater avail-

ability of data on this interconnectivity. The former trend makes spreading

phenomena on networks a relevant topic. The latter provides the possibility

to do research on this topic using real-world data: As Chen et al. (2013) note

in their survey on Information and Influence Propagation in Social Networks,

”[e]nabled by the Internet and sparked by the recent advent of online social

networking sites such as Facebook, LinkedIn and Tumblr, research on social

networks is witnessing an unprecedented growth due to the ready availability

of large scale social network data. This has at once led to the development of

many exciting applications of online social networks and to the formulation

and the subsequent study of many research questions.”

One such research question is to find the minimal number of individuals

in a network, such that at least a predefined number of individuals will

be affected by a propagation process from these initial individuals. This

problem, the so-called Target Set Selection Problem (TSSP), is the main

topic of this thesis.

This thesis extends the literature on the TSSP mainly influenced by

Nichterlein et al. (2013), Ben-Zwi et al. (2011) and Chen et al. (2013) by

addressing the case of negative influence between individuals. More pre-

cisely, an integer linear programming formulation for finding the target set

of networks with edges of arbitrary edge weight is proposed and some of the

features of solved instances are being examined.
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2 The Relevance of the Target Set Selection

Problem

The following subsections will discuss some fields in which the TSSP is par-

ticularly relevant.

2.1 Mass Psychology

When considering spreading phenomena in networks, the network topology

plays a crucial role: In weakly connected networks, individual changes will

not lead to great effects on the overall network. When however the network

is strongly interconnected, small changes for the individual can lead to large

effects on the large scale. In his work ”The Tipping Point”, Gladwell (2006)

describes how small changes can have a large effect:

”The tipping point is that magic moment when an idea, trend,

or social behavior crosses a threshold, tips, and spreads like wild-

fire.”

One example Gladwell (2006) adduces is the hypothesis, that the introduc-

tion of stricter sanctions of the New York authorities against minor offenses

like vandalism or evasion of paying the fare resulted in a significantly lower

crime rate. Gladwell reasons that these kinds of unlawful behavior, albeit

being bagatelles, shape the urban image and lower the psychological thresh-

old of unlawful behavior of citizens. Removing these small but influential

acts against the public order, according to Gladwell (2006), increased the

psychological threshold of law infringements for some people. The absence

of law infringements in turn increased the psychological threshold for more

serious crimes, creating a self-enforcing propagation of lawfulness. Gladwell

argues that this effect of self-enforcement due to propagation can be har-

nessed, and emphasizes the importance of the correct starting point in the

network: ”Economists often talk about the 80/20 principle, which is the idea
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that in any situation roughly 80 percent of the work will be done by 20 per-

cent of the participants. In most societies, 20 percent of criminals commit

80 percent of crimes. Twenty percent of motorists cause 80 percent of all ac-

cidents. Twenty percent of beer drinkers drink 80 percent of all beer. When

it comes to epidemics, though, this disproportionality becomes even more

extreme: a tiny percentage of people do the majority of the work.”

Spencer and Howarth (2013) establish a moral-motivation model in which

the explained effect of propagation of social norms is applied to the adop-

tion of green behavior. They argue that shifts to permanently different mass

behavior could be achieved by incentivizing a small minority of the popula-

tion. How to find this set of individuals (given perfect information about the

structure of the social network) is the main topic of this thesis.

2.2 Defense against Terrorism

The need for deeper understanding of the impact of propagation effects in

networks has also been recognized as crucial in matters of state security. In

the primer ”Network Science” published by the National Research Council

(2005), co-authored by the Army Science Board, the importance of network

science is emphasized:

”A gap exists between currently available knowledge about networks and

the knowledge required to characterize, design, and operate the complex

global physical, information, biological, and social networks on which the

well-being of our citizens has come to depend. Closing this gap is an urgent

matter because society has become dependent on the reliable, robust oper-

ation of complex global communication, information, transportation, power,

and business networks. The disruption or exploitation of these networks by

adversarial social networks of terrorists or criminals is a demonstrated threat,

making an investment in network science not only strategically sound but also

politically urgent.”
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A potential terrorist attack might be based on the fact that one single

malfunction of a component in a connected system can induce a cascade that

leads to the malfunction of the entire system. Barabási and Frangos (2014)

points out, that systems which are comparatively safe under the circumstance

of randomly failing parts can turn out to be very fragile in the case of targeted

attacks.

As Cohen et al. (2001) argues, one possible scenario would be the attack

against a small number of routers in order to induce a breakdown of huge

parts of the Internet.

In order to improve the attack-stability of systems, their vulnerability has

to be evaluated. Analyzing ways of finding the ”weak spot” of a system is

one step towards that goal. Similar considerations have been published by

Asavathiratham et al. (2001) regarding cascading failure in power networks

and by Tanizawa et al. (2005) regarding the robustness of the internet. Find-

ing the weak spots in such systems and what role network structure plays in

the susceptibility to attack are questions where insights can be gathered in

analyzing the TSSP.

2.2.1 Spread of Diseases

Special importance has been attributed to the study on the relationship of

network topology and the spread of diseases.

As Shirley and Rushton (2005) ascertain, diseases are spreading quicker

in networks that possess a scale-free degree distribution than in locally clus-

tered networks.

Tatem et al. (2006) draw the conclusion that the emerging international

interconnectedness through global transport networks contributes to the fact

that the network, on which infectious diseases can spread, are adopting scale-

free properties.
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Other applications within this realm were published by Bearman et al.

(2004) examining efficient ways in combating the transmission of sexually

transmitted diseases and Dezső and Barabási (2002) examining vaccination

strategies.

2.3 Peer-to-Peer Marketing

A commonly used example of a propagation process is a sales promotion

relying on consumers recommending the promoted product to their peers.

Here, the aim is to find the minimal number of people to incentivize to buy

a product and recommend the product to their peers, which in turn will buy

and further recommend the product.

The impact of each possible combination of selected initial individuals

on the number of consumers for which at least one peer will recommend the

product depends on the social network topology. Furthermore, persuading

initial individuals to buy the product comes at a cost, therefore there exists

reason to find the optimal set of initial costumers.

The existing TSSP model assumes that a buying decision of one individual

will have a positive effect on the likeliness that the individual’s acquaintances

will buy the product as well. As the opposite case is easily conceivable, a

generalization in which both positive and negative influence can be exerted

between individuals represents a closer approximation to certain cases in the

real world. This thesis proposes an ILP formulation for such a generalized

model and applies it to several networks instances.

2.4 Financial Contagion

Haldane and May (2011) applies the notion of cascading failure to failure of

financial institutions which are interconnected by credit relationships: The

interbank market, in which banks engage in credit contracts with each other,

is an example of a network where the failure of a small part of the network
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may lead to the failure of the entire system. The credit relationship between

two banks can be understood as a relation between two actors, where the

financial stability of one actor is positively related to the financial stability

of the other player. The hypothesis of a strictly positive relation might not

stand for all kinds of relation. For instance, between two firms competing

in the same market, the financial stability of one firm might be negatively

related to the financial stability of the other.

3 Preliminaries

This section will introduce concepts which will be needed in later sections.

3.1 Graph Theory Terminology

A network of individuals that stand in relation to each other can be repre-

sented by a graph G(V,E). Each node v ∈ V represents an individual and

two nodes u, v ∈ V are connected by an edge {u, v} ∈ E. if there exists a

relation between them.

If the assumption of mutual relations is given, the edges are undirected.

If relations may be unilateral, a relation is represented via a directed

graph G(V,A), in which an influence of u ∈ V on v ∈ V is represented by an

arc {u, v} ∈ A.

The amount of edges a node u possesses (
∑

v{u, v}+
∑

v{v, u}) is called

the degree of node u. In case of a graph with directed edges, there exist

also indegree (
∑

v{v, u}) and outdegree (
∑

v{u, v}) of a node.

A path is a sequence of nodes v1, v2, ..., vk such that between every pair

of adjacent nodes there exists an edge {v1, v2}, {v1, v2}, ..., {vk−1, vk} and no

node repeats itself (vi 6= vj∀i 6= j). The distance between two nodes d(u, v)

is the shortest possible path between two certain nodes.

The diameter of a graph diam(g) is the length of the longest distance

existing in a graph G for all sets of u, v ∈ V . The network structure can
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have a huge influence in the diameter of a network: In the case of a network

consisting of a chain of nodes, each two nodes connected by one edge, the

diameter of a graph equals the amount of edges in the graph. In the case of

fully connected graphs, the diameter equals one.

A closed triplet is formed by three nodes u, v, w, which are connected

by three edges {u, v}, {v, w}, {w, u}. The three nodes of an open triplet

are connected by only two nodes {u, v}, {v, w}.
The Clustering Coefficient C is the amount of all closed triplets divided

by the amount of all triplets in a graph G. For instance, a full graph (a graph

with edges between each pair of nodes) has a clustering coefficient of C = 1,

a tree has a clustering coefficient of C = 0.

A Connected Component of a graph is a subset of nodes, of which

each node shared an edge with at least one other node in the subset, but no

node in the subset shares an edge with a node outside of the subset.

3.2 The Small-World Property

A central publication in the analysis of path lengths of acquaintance net-

works is the article ”The Small World Problem” by Milgram (1967): The

article describes an experiment, in which the participants needed to send a

letter to an acquaintance who was to forward it in turn to reach a predefined

recipient. Milgram claims that the average number of forwardings per letter

was about six.

This raises the question how it comes to be that in a network of several hun-

dred million nodes (the population of the United States) the average path

length seems to be just equal to six. Here, it is worthwhile to think about

the structure of networks.

Many real-world networks display a combination of high clustering and

small average path length. The networks which represent this combination
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have been characterized as ’Small World Networks’ by Watts (2004).

Watts defines these networks as scale-free, this means that the probability

of a given node having k edges P (k) exhibits a power law distribution P (k) ∼
k−γ. As a result, while most nodes have a very low degree, a small fraction

possesses a very high degree. The average degree in this kind of networks is

far higher than the degree of the vast majority of nodes.

3.3 Random Graphs

In static random graph models like the Erdös-Rényi model by Erdös and

Rényi (1959) or the network generation algorithm by Molloy and Reed (1995),

a graph is created by repeatedly selecting pairs of vertices with a static

probability and creating an edge between them. In the Erdös-Rényi Model,

the degree distribution can be approximated by a Poisson distribution.

Molloy and Reed (1995) also describe a procedure to generate Random

networks with an arbitrary degree distribution.

Erdös and Rényi (1959) introduce the concept of a Giant Component:

Taking a unconnected random graph, and adding one edge between two ran-

dom nodes at a time, the number of connected components will gradually

decrease from n to 1. What remains striking is that as a rule, when the

average degree surpasses 1, one connected component emerges that is much

greater than the rest of the components. Erdös and Rényi call this the giant

component.

Yet this does not provide any explanation of the perceived short average

shortest path between two nodes, or the high local clustering in real networks.

As Barabási and Pósfai (2016) states, in a random network, for a node

with a fixed degree, when increasing the size of the network, the clustering

coefficient decreases significantly.

Barabási and Pósfai (2016) states that for random networks of a small

node count and a fixed number of edges per node, the clustering coefficient is

high, because the chance is high that for any node, two of its neighbors will be
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connected. Random networks of larger node count and the same number of

edges per node, the clustering coefficient will be lower, since the probability

that for any node, two of its neighbors will be connected, is sinking with

increasing size of the network.

This is easy to illustrate: When starting off with three nodes, and an av-

erage degree of two, the clustering coefficient equals one, since every triplet

is closed. When stepwise adding one node and two edges to the network, the

probability of forming a new triplet in each step will continually get smaller.

With adding nodes ad infinitum, the clustering coefficient will approximate

zero.

The network obtained by this process will bear a low number of triplets,

obviously different to many real-world networks such as the network of ac-

quaintances, where it is common that if two individuals both are acquainted

to the same third individual, they are also acquainted to each other.

3.4 Fitness Models

The assumption, that the probability of two vertices share an edge is in-

dependent of the node’s features (i.e. its degree) seems to be somewhat

incompatible with reality. For instance, one might think of a graph with

nodes representing the world’s population, which are joined by an edge if

they know each other by name. In this case, determining the chances of a

certain individual to know any other simply on a matter of the degrees of

each of the two seems far from reality. Factors like the distance between

the homes of the individuals play a huge role, as everyday experience shows.

Using a model that takes into account intrinsic properties of vertices which

have an effect regarding the question to which node they are connected to,

Söderberg (2002) defines a certain value for each vertex that assigns it to

a type. The probability of two vertices being connected depends on their

’fitness’, e.g. the type of the two vertices. Sonderberg shows that using a

scale-free fitness distribution together with a non-scale free degree distribu-
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tion can result in a scale-free network. This suggests that properties inherent

to the vertices can play a crucial role in the overall structure of the networks.

3.5 The Watts-Strogatz Model

In the Small World Model by Watts and Strogatz (1998), the construction

of the network starts off with a so-called ring lattice with n vertices and

k edges per vertex. Hereby all vertices are arranged in a ring and every

vertex is connected to its k closest neighbors. Depending on a given rewiring

probability p, each edge has the chance to change one of its ends to a different

node. This construction allows to vary the ’amount of randomness’ of a graph

between p = 0 and p = 1, where the former represents the initial ring lattice,

and the latter represents a random network.

Watts and Strogatz (1998) analyse the value of the normalized cluster-

ing coefficient and the average path length for graphs with varying rewiring

probability:

When starting with a graph with low rewiring probability and gradually

increasing it, the initially very high local clustering of nodes decreases with

a steady rate. The average path length however reduces significantly already

with the first changed edges. That means a moderate rewiring probability

does not have a great effect of the local clustering of the graph but leads to

far shorter average path lengths than in a ring lattice.

These features are what we were looking for at the beginning of the chap-

ter: A network with high local clustering, similar to the network of acquain-

tances of the participants of Milgram’s study, but at the same time a short

average path length, similar to the short chain of letter forwardings.

4 Diffusion Models

In this section different types of diffsion models will be presented.
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4.1 Value Types

Diffusion describes the effect of the spread of one node’s value to nodes con-

nected to it. These values may be categorical, discrete or continuous. One

example of a diffusion model with a categorical value is the model of dissem-

ination of culture by Axelrod (1997), in which culture is being represented

by a combination of traits (such as language, religion, etc.). In the model,

individuals are represented by nodes on a grid, each connected to its four

neighbors. Each node has a vector of values, which represent the traits of

the individual. If two neighbouring individuals share any common trait, with

a certain probability, one of the not-shared feature values of one of the two

individuals replaces the corresponding feature value of the other individual.

After a certain number of rounds, each individual can have only neighbors

of two kinds: Individuals they do not share any trait with, and individuals

which share all of their traits. A group of neighbouring nodes with identical

traits are called a zone. Axelrod simulates the effect of different levels in

the number of individuals, traits and influence distances on the number of

zones in the final state. In an alternative model, Axelrod proposes continuous

traits, enabling influence between all nodes. Since in this variant, all nodes

are subject to the assimilation process, each node has the identical traits in

the final state of the process.

Henceforth, this thesis restrict itself to diffusion models of one single value,

which can take one of the two states activated and not activated.

4.2 Stochastic vs. Deterministic Models

Diffusion models can follow deterministic or stochastic rules. An example of

a deterministic model is the model of influence spread by Richardson and

Domingos (2002), in which a node is being activated with certainty as soon

as the number of active neighbors exceed the threshold of the node.

An example where spreading behavior on networks that does not follow de-
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terministic rules is found is in Percolation Theory by Bollobás and Riordan

(2006). Here, a certain probability is being assigned to nodes or edges which

determines the probability that it exerts influence.

4.3 Progressive vs. Non-Progressive Models

In progressive models, a once acquired state does not switch back, in non-

progressive models, nodes can change their state back and forth.

As will be discussed later, non-progressive diffusion models can lead to dif-

ficulties determining the minimum-size target set on graphs with arbitrary

edge weight. Since activated nodes can be deactivated later on, the acti-

vation process cannot be easily depicted by a non-cyclic diffusion graph for

every conceivable instance, since edges might be activated, deactivated, and

reactivated again. Furthermore, there exist instances where no steady state

is reached: For example, a pair of nodes might activate and deactivate each

other in turn ad infinitum. With progressive models however, it is obvious

that a diffusion process on a graph of n vertices must have reached a steady

state after at most n time steps: The activation process, depicted in a dif-

fusion tree cannot be longer than the longest path of the underlying graph,

which is bound by the node count of the graph.

4.4 The Independent Cascade Model

Kempe et al. (2003) provide a definition of the Independent Cascade

Model:

In the graph G(V,E), a uniform value pv,w is assigned to every edge

pv,w,∀{v, w} ∈ E, which determines the probability that node w gets acti-

vated by node v in the round after node v has been activated. The process

stops when no new nodes have been added in a step.

Granovetter (1978) states, that the Independent Cascade Model is sub-
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modular and monotonic. The notion of Submodularity states that for any

given set of x initially active nodes which have been selected, adding a certain

node i to the initial set cannot increase the size of the set activated by the

propagation process by more nodes than adding this same node to the set of

n+ 1 initially active selected nodes.

Monotonicity states that for any node, each additional neighbour that

is becoming activated, contributes to the node itself getting activated: Let

us assume that the function gv(·) determines if a node v gets activated by

its set of neighbors N(v) at a certain time step. Further, X ∈ N(v) and

Y ∈ N(v) are two possible sets of active neighbors for node v where X < Y .

If the function gv(·) is monotone, gv(X) must never be greater than gv(Y )

for any node v or sets of neighbors X and Y (given X < Y ).

Submodularity and monotonicity together constitute a feature that can

be exploited in the design of algorithms. When establishing the WTSSP with

arbitrary edge weights later on, which does not inhibit these two features, it

will be shown that a lack of these features constitute a challenge in estab-

lishing a solution method to finding the optimal target set.

4.5 The Threshold Model

Kempe et al. (2003) provide a definition of the Threshold Model:

In a graph G(V,E), each node v ∈ V is can share an edge {v, w} with

another node w∀v neqw.

All the nodes connecting v to its neighbors exhibit a certain weight bv,w,

such that
∑

w bv,w ≤ 1.

Each node exhibits a threshold θv between 0 and 1, which defines the

weighted fraction of v’s neighbors that have to be active in order to activate

v. The propagation process happens over a sequence of time steps. At the
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initial time step t0, a set of nodes A0 is active, all other nodes are inactive.

At each time step, all inactive nodes that have a weighted level of active

neighbors larger than the their own threshold level θv are being activated.

This is repeated until the active set does not grow anymore.

As does the Independent Cascade Model, the Linear Threshold Model

shows the properties of submodularity and monotonicity.

4.6 The Voter Model

The Voter Model is an example of a non-progressive model. This means

that once a node has been activated, it can be deactivated again. In the Voter

Model, each round every node adapts the state of one of its neighbors. This

has the effect that a node’s state can switch back and forth. An influence

diffusion process following the Voter Model is being described by Even-Dar

and Shapira (2007). A generalized model is provided by Pathak et al. (2010).

This model is being extended to a friend-and-foe-model by Li et al. (2013).

4.7 The Relevance of Topology for finding a set of in-

fluential nodes

As has been discussed in the section about Diffusion Models, the topology

of a network affects features such as the average path length. This chapter

explains the relevance of network features to the question of finding optimal

node subsets for propagation processes. The relevance of network topology

for the Target Set Selection Problem - which in detail will be defined later on

- can be demonstrated more easily by a related problem, the Vertex Cover

Problem (VCP).

The objective of the VCP is to find a set of nodes X from a graph G(V,E)

such that every node of the graph is either in X or shares an edge with a

node in X.
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Vázquez and Weigt (2003) show the connection between degree corre-

lations and the VCP. The authors demonstrate that the higher the degree

correlation in a network is, the poorer results will be obtained by some heuris-

tic solution approaches.

In the following, the terms ’Assortativity’ and ’Disassortativity’ will be used.

A graph is described as assortative, if the degrees of its nodes are correlated,

i.e when the average degree of neighbors of a node with a high degree is

higher than the average degree in the entire graph, and the average degree of

nodes neighboring a node with a low degree is lower than the average degree

in the entire graph. If no such relation can be observed, a network will be

defined as unassortative. A network, in which the average degree of nodes

neighboring a node with a high degree is below the average degree in the

entire graph, et vice versa, is defined as disassortative.

To illustrate Vázquez and Weight’s point, we can imagine two networks

of identical node and edge count, but with a different degree correlation.

In both cases, a heuristic is being used, which starts with an empty subset

and then adds the node which possesses the currently highest degree of the

remaining graph into the subset. When there remains no edge, which does

not neighbor a node that is in the subset, the heuristic stops and has found

a feasible solution.

To exemplify, let us look at two graphs in figure 1a and 1b. Both

graphs consist of 7 nodes and 6 edges, thus they have an average degree

of 6 · 2/7 ≈ 1.7. Yet they have a different topology, in the graph in figure 1a,

for every node, the average degree of its neighbors is equal to 2. The network

therefore is neither assortative nor disassortative.

In the graph in figure 1b, nodes with a low degree are connected to nodes

with a high degree, et vice versa. Following the reasoning of Vázquez and
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(a)
(b)

Figure 1: (a) An unassortative graph (b) A disassortative graph

Weight, the heuristic’s solution should obtain a result closer to the optimum

for the disassortative graph than for the neutral graph.

(a) (b) (c) (d) (e)

Figure 2: Steps of the heuristic on the unassortative graph

Figure 2 shows from left to right the steps of the heuristic. We start with

an empty subset (fig. 2a). In the first step (fig. 2b), the node with the

highest degree is being put into the subset. After this, each of the adjacent

nodes have still one neighbors in the remaining graph, and they must be put

into the subset step by step as well (fig. 2c - 2e). After that, each edge has

at least one adjoining node in the subset.

We can see easily here, that the solution is feasible but not optimal. The

solution would also be valid without the central node being in the subset of

selected nodes.

In the case of the disassortative graph, first one of the two nodes with a
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(a) (b) (c)

Figure 3: Steps of the heuristic on the disassortative graph

degree of 3 is being picked for the target set (fig. 3b). Then the remaining

node of degree 3 is being picked (fig. 3c). After that every edge is adjacent

to a node in the subset. It is evident that the solution is not only feasible

but optimal.

This example illustrates the conclusion drawn from experiments by Vázquez

and Weigt (2003): Heuristics based on the degree of nodes are less promising

for finding a solution to the VCP on assortative networks.

This is relevant for applying the related TSSP to graph instances from social

network, since this kind of networks generally are assortative networks, as

stated in Barabási and Pósfai (2016).

Experiments on the effectiveness of heuristics based on degrees and cen-

trality for the TSSP have been conducted by Kempe et al. (2003): Using

a propagation process following the independent cascade model and an in-

fection probability of 10%, for instances with a relatively large optimal tar-

get set degree- and centrality-based heuristics provide worse approximations

than picking nodes randomly. The author argues that for increasing target

set sizes the nodes connected to weakly connected nodes gain importance.

These nodes seem to be undervalued in degree- and centrality-based algo-

rithms.

Barabási and Frangos (2014) observes, that in networks with a high aver-
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age degree, single nodes are unlikely to infect their neighbors, hindering them

from starting propagation process affecting a larger part of the network. He

calls these networks Subcritical Regimes. Networks, in which single nodes

can trigger a global cascade are termed Supercritical Regimes.

The effect the average degree has on the number of nodes necessary to in-

duce a cascade affecting the entire network will be one of the topics in the

experimentations part of this thesis.

A similar observation is being made by Peleg (2002): Peleg illustrates

the impact of network structure on the spread of influence: Assuming a

simple majority threshold and no weights with progressive activation (and

no deactivation), there exist instances in which a target set of only two nodes

suffices to activate the remainder of the entire network, regardless of its size.

One such instance is a network where all initially inactive nodes possess only

two edges, one to each of the nodes of the target set. Using a model of non-

progressive propagation, meaning that nodes will be deactivated with the

ratio of their active neighbors being under the nodes’ threshold, a minimal

target set of 2
√
n suffices to activate the entire network in the most extreme

case.

5 The Target Set Selection Problem

Richardson and Domingos (2002) define the Influence Maximization Prob-

lem, in which a subset of nodes from a Markov random field is active at the

start of the propagation process. This node subset is called the Target Set.

In the propagation process, active nodes exert influence on their neighboring

nodes. For any node, when the influence received by its neighbors exceeds

its threshold, the node becomes active and exerts influence on its neighbors

in turn. The Influence Maximization Problem looks for the best combination

of nodes forming a target set of given size that leads to the maximal number

of nodes being active after the cascade. In the Target Set Selection Problem
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defined by Kempe et al. (2003) the target set is not bound, but there exists

a lower limit l for the nodes to be activated at the and of the propagation

process.

The following subsections illustrate the propagation process and present

ILP formulations for different variants of the TSSP.

5.1 Illustration of the Propagation Process

The threshold of a vertex will be depicted by the number on the upper left

of each node. The direction of edges on which influence can be exerted from

one node to another is being represented by an arrow, edge weights are being

depicted by a number next to the edge.

(a) (b) (c)

Figure 4: Propagation steps

In figure 4a, a cascade on a network with strictly positive edge weights is

shown. The figure shows the graph as the start at the first time step. Node

1 is in the target set and is therefore already active. The threshold of a node

is depicted by the number on the upper left of each node. The direction of

edges on which influence can be exerted from one node to another is being

represented by an arrow, edge weights are being depicted by a number next

to the edge.

In the next activation round (fig. 4b), node 2 is activated, since the in-
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fluence received from its active neighbor (d1,2 = 1) is larger or equal to its

threshold (h2 = 1). Node 3 is not being activated, since its received influence

(d1,3 = 1) is smaller than its threshold (h3 = 2) and therefore not sufficient

to activate it. As a result, the edge from node 2 to node 3 gets activated.

In the next activation round (fig. 64c, node three gets activated, since now

the sum of the weights of the active incoming edges (d1,3 + d2,3 = 2) is larger

or equal to its threshold (h3 = 2).

Here the minimal-size target set for activation of the entire graph is straight-

forward. In the case of larger graphs, finding the optimal target set becomes

a less trivial task. Another factor that complicates finding the optimal target

set is the range of allowed weights of the edge weights. When allowing edge

weights to be negative, the order of activation must be taken into consider-

ation, as will be shown later on.

(a)

Figure 5: A graph with a negative edge

The graph in figure 5 the first round of a correct solution to the target set.

Even though the sum of the weight of all incoming edges of node 2 is equal to

zero and therefore less than its threshold of 1, the node will be active. In the

cascade, node 3 is activated after node 2 and therefore can exert influence

only after node 2 has been activated. Once activated nodes stay active, even

when their activation condition does not hold anymore. Therefore the set of

node 1 is a valid target set for this graph.
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5.2 WTSS with Node-specific Costs

Zhang and Sahin (2014) propose an ILP-formulation with node-specific costs

for selection for the target set:

A graph G(V,E) consists of a set V of nodes numbered by the index

i. Nodes may be connected. The subset of vertices that are connected to

a vertex i are called i’s neighbors. The activation is being depicted by the

variable yij, which is 1 if vertex i influences its neighbour j in the cascading

process. Nodes are weighted by a factor bi which quantifies the cost of having

them in the target set. Every vertex inhibits a constant gi, which denotes

the number of neighbors to be active in order to activate i. If a vertex is

being selected to be in the target set, its variable xi is set to 1.

min
I∈V∑
i=1

bixi (1)

s.t.
∑
j

yji + gixi ≥ gi ∀i ∈ V (2)∑
(i,j)∈C

yij ≤ |C| − 1 ∀cycles C ⊆ E (3)

xi ∈ {0, 1} ∀i (4)

yij, yji ∈ {0, 1} ∀i, j (5)

The target function (1) sets the objective to finding the least costly target

set. Constraint (2) makes sure that vertices only can be activated by either

being in the target set, and/or by an amount of neighbors greater than i’s

threshold gi already being active. In order to prohibit circular processes, in

which a vertex a is activated by another vertex b directly or indirectly being

activated by vertex a, constraint 3) is needed. In the case of an undirected

graph, each edge must be seen as the smallest possible circle.
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5.3 WTSS with Subsidies

Spencer and Howarth (2013) propose an ILP-formulation for a similar model.

Here, an node can be ’nudged’ towards joining the target set by paying a

subsidy yi:

The binary variable xit denotes whether an actor i is adopting the behav-

ior in time step t. A node becomes active either when it is in the target set

or when a fraction of its neighbors of at least bi are active. The size q of the

initially active set is to be minimized:

min q (6)

s.t.
∑
I∈V

yi ≤ q (7)

xit ≤ yi + (1/bi)
∑
j∈δ(i)

xj,t−1 ∀i ∈ V , t ∈ {0, 1, ...1|V |} (8)

For the amount of time steps the trivial upper bound of the number of nodes

of the graph is being used. The following constraints guarantee that only yet

active nodes i cause their neighbors j to become active:

xit ≤ (1/bi)
∑
j∈δ(i)

xj,t−1 ∀t ∈ {0, 1, ...1|V |} (9)

xi,|V | ≥ 1 ∀i ∈ V (10)
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5.4 Least Cost Influence Problem

Instead of having to pay a fixed value to an individual for being in the target

set, a low amount might be enough if the individual is subject to some level

of influence. Thus, in this extension we allow the cost for assigning a vertex

to the target set be an incentive pi whose optimal amount has to be deter-

mined. Like previously, each vertex inhibits a threshold bi to be reached in

order to activate the vertex. Each vertex is influenced by an active neighbor

by the factor dij.

For the Least Cost Influence Problem, Fischetti et al. propose the follow-

ing ILP-formulation:

min
∑
i∈V

∑
p∈Pi

wipxip (11)

s.t.
∑
p∈Pi

pxip +
∑

(j,i)∈A

djizji ≥ hixi ∀i ∈ V (12)

∑
p∈Pi

xip = xi ∀i ∈ V (13)∑
(i,j)∈C

zij =
∑

i∈V (C)\{k}

xi ∀k ∈ V (C), ∀ cycles C ⊆ A (14)

zij ≤ xi ∀(i, j) ∈ A s.t. (j, i) /∈ A (15)∑
i∈V

xi ≥ dα|V |e (16)

xip ∈ {0, 1} ∀i ∈ V ,∀p ∈ P (17)

xi ∈ {0, 1} ∀i ∈ V (18)

zij ∈ {0, 1} ∀i, j ∈ A (19)
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6 Solution Approaches for the TSSP

In this section, a brief overview of solution approaches to existing variants of

the TSSP will be given.

6.1 Heuristics

Wasserman and Faust (1994) propose heuristics based on degree and cen-

trality for solving set selection problems for sociological models. One simple

heuristic mentioned is to rank the nodes of a graph by decreasing degree (or

centrality), and step-by-step add these nodes to the initially active set until a

feasible solution is reached. Kempe et al. (2003) propose a greedy algorithm

for solving the TSSP: Starting with an empty target set, each step the node

with approximately the highest marginal gain is being selected.

Cordasco et al. (2015) propose a heuristic with a time window constraint:

Here, the question whether a node gets activated in time step t is not de-

pendent on the activated neighbors of rounds one to t, but just on the last

λ rounds. This approach always produces an optimal solution for trees, cy-

cles, or complete graphs, and produces better approximation for real-world

networks than previously published algorithms.

6.2 Exact Solutions

Chen (2009) proves that the TSSP is NP-hard. Ben-Zwi et al. (2011) pro-

pose an algorithm for finding an exact solution to the TSSP, which has a

complexity of |V |Oω, where ω is the tree width of the graph. Günneç et al.

(2016) propose an exact algorithm for the the Least Cost Influence Problem.
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7 Complexity of the TSSP

The Target Set Selection Problem is NP-complete. However, there exist

kinds of graphs where the TSSP becomes tractable, as Nichterlein et al.

(2013) show. Some of these special cases and reduction rules will be shown

in the following.

7.1 Reduction Rules for the TSSP

The size of an instance of the TSSP in some cases can be reduced in polyno-

mial time by finding nodes with characteristics that clearly make them either

part of the target set, or rule them out as candidates for the target set. One

such kind of nodes are Stubborn Vertices. Considering the case where the

entire graph must be activated (l = n), nodes whose threshold h(i) exceeds

their degree deg(i) (or in the weighted case the sum of the edge weights of

their neighbors
∑
djixji) cannot be activated by their neighbors. Therefore,

they can be added to the target set immediately and the thresholds of their

neighbors can be reduced by one. Likewise, vertices which have a threshold

h(v) equal to zero can be removed from the candidates for the target set and

all their neighbors’ thresholds can be reduced by one. Both reductions can

be achieved in linear time according to Nichterlein et al. (2013).

Similarly, Lemming Vertices can be ruled out as candidates for being in

the target set: When a node i exhibits a threshold h(i) = 1, it will be acti-

vated during the activation process if one of its neighbors j is in the target

set. If its neighbour itself possesses h(j) = 1, and one of its neighbors is in

the target set, vertex j will also be activated. More general, any connected

subgraph whose nodes exclusively possess thresholds equal to 1 will be acti-

vated if any of its nodes’ neighbors outside of the subset is in the target set.

Under the assumption that in every connected component of the entire graph

G there exists at least one vertex with h(i) ≥ 2, it follows that there exists an

optimal target set which does not contain any vertices with h(j) ≤ 1. This

25



is the case because in an optimal target set any vertex i with a threshold

h(i) = 1 can be exchanged by any vertex j not already in the target set

which is a neighbour of the subset of vertices connected to i with thresholds

equal to one, as is shown by Nichterlein et al. (2013).

Figure 6: A graph with a stubborn vertex and a lemming vertex

An example of a graph with a stubborn vertex and a lemming vertex can

be seen in figure 6. The threshold of node number three (h3 = 2) is higher

than the maximum of influence it could receive from its neighbors (d2,3 = 1).

Therefore, it can only be activated by making it part of the target set. Node

2 on the other hand can be ruled out as a candidate for the target set, since

it has one incoming edge and has a threshold of 1. It will become active once

its neighbouring node 1 will be active. Therefore, there exists no reason to

favor node 2 over node 1 for the target set, while node 1 will not be activated

when only selecting node 2. Thus, node 2 is a Lemming Vertex.

Furthermore, Nichterlein et al. (2013) establish the rule of Vertex Addi-

tion: Having a valid target set S for a graph G, when adding a new vertex

i to the graph and connecting it to h(i) arbitrarily chosen vertices, the set S

will still be a valid target set for the new entire graph G′. Furthermore, any

target set S ′ for the graph G′ where i is not in the target set will also be a

valid target set for the graph G. These reductions can be done to a graph

in arbitrary order without impacting the validity of the solution. Also, sub-

dividing an edge i, j by introducing a new vertex k with threshold h(k) = 1

and edges i, k and k, j does not change the cardinality of the optimal target
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set of the entire graph. A node i in the target set can be exchanged with a

node outside of the target set j with identical neighborhood.

In cliques, the following rule can be applied: The nodes of a clique are being

ordered by their degree, the nodes with highest degree are added stepwise to

the target set, until the number of nodes of the clique which are part of the

target set equals the threshold of the node of the clique outside of the target

set with highest degree. This process takes linear time, as Nichterlein et al.

(2013) state.

7.2 Parameterized Complexity

The notion of Parameterized Complexity analyses the complexity of prob-

lems dependent on multiple parameters. For instance, in general complexity

theory, the TSSP is not tractable with increasing input size n. However,

as we will see, for the restriction that the diameter of the graph is being

restricted to 1, any instance of the problem will be a complete graph, whose

target set can be calculated in linear time. In the case of a problem becoming

tractable under the restriction of a fixed factor k, the problem is fixed pa-

rameter tractable for the respective parameter k, as Downey and Fellows

(2013) show.

Nichterlein et al. (2013) enumerate various parameterized reductions for the

TSSP. A parameterized reduction P ′ is obtained by applying a function which

is bound by the factor k to a problem P in order to make the problem fixed

parameter tractable with the factor k. Such parameters are the Cluster

Editing Number, the Cluster Edge Deletion Number, the Feedback Edge Set

Number, and the Vertex Cover Number. The Cluster Edge Editing Number

ζ denotes the minimum number of edges which have to be added or deleted

in order to transform a graph into a disjoint union of cliques. Since the clus-

tering coefficient is generally small in small-world graphs, it can be assumed

that the Cluster Editing Number is generally low on real-world graphs. The
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TSSP is shown to be solvable in O(16ζ) ·m+ n3 time, shown by Nichterlein

et al. (2013).

The Cluster Edge Deletion Number ξ denotes the minimum number of edges

that have to be deleted from a graph in order to transform the graph into

a disjoint union of cliques. The TSSP is solvable in O(4ξ · m + n3) time

according to Nichterlein et al. (2013).

The Feedback Edge Set Number f denotes the minimal number of edges

which have to be removed from a graph in order to make it acyclic. The

TSSP can be solved in O(4f ·f +m) time, shown by Nichterlein et al. (2013).

This graph measure seems promising, since the optimal feedback edge set

can be computed efficiently by computing a spanning tree. For the example

of the Internet, empirical measurements on the graph structure of the known

nodes many times consist of a spanning tree. When the connections from one

server to another is being measured, packets are being sent from a certain

number of servers to a huge number of destinations. The addresses of every

node being traversed is being recorded in the packet. Doing this, the short-

est path from any of the source nodes to any known node can be measured.

Since generally the path of the packets are cyclic only in few exceptions, the

feedback edge set number is very low.

7.3 Vertex Cover Number

The Vertex Cover Number τ is the number of nodes of the smallest subset of

a graph where at least one of the ends of each edge of the graph is part of the

subset. In other words, there must not be any node in the graph that either

is in the subset or/and is not neighboring at least one node of the subset.

The TSS is shown to be solvable within O(tmax · 2τ) time, where tmax is the

maximal degree of the graph, shown by Nichterlein et al. (2013).
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8 Target Set Selection with Arbitrary Edge

Weights

In the following, a variant of the TSSP will be described in detail and a - to

the best knowledge of the author - novel ILP formulation given.

8.1 Explanation of the Model

It is assumed that in a network peers that share a connection can influence

each other both positively as well as negatively. The act of influence may

be non-mutual. I.e. individual A might influence a value of individual B

positively, whereas individual B might influence A negatively. In a scenario

with both positive and negative influence, the activation effect of changes

in centrality measures and number of degree of vertices is not as straight-

forward as in the case where there is only positive influence. A higher average

degree and a higher betweenness do not necessarily mean a smaller target

set to influence the same number of nodes. The concepts of submodularity

and monotonicity do not hold for this kind of model, as will be described in

the following.

The Target Set Selection Problem with Arbitrary Edge Weights is not

to be confused with the Minimum-Sized Positive Influential Node Set by He

et al. (2017), in which the edges possess positive weights, and a node exerts

positive influence on its neighbors if it is activated, and negative influence if

it is not activated.

8.2 Adaptions for the Case of Arbitrary Edge Weights

For the case of arbitrary edge weights, i.e. edge weights that can take positive

or negative values, some considerations have to be made when establishing
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a ILP formulation.

8.2.1 Maintaining the Order of Activation

One challenge in finding an ILP-formulation for the Weighted Target Set

Problem with Arbitrary Edge Weights lies in the fact that constraints re-

garding the order of activation must be met in order to maintain the validity

of the solution: When a node A with an outgoing edge to node B which has

a negative weight is being activated early in the propagation process, node

B will have to receive a higher amount of influence in order to be activated

than it would have had to before it had been exerted to the negative influence

from node A.

(a) (b) (c)

Figure 7: Propagation process with order Violation

An example of a case where the negligence of the order of activation leads

to invalidity is depicted in the figure 7a. The figure shows the graph with the

minimal solution found with the ILP-formulation for graphs with nonnega-

tive edge weights. This solution is not valid since it violates the rule that

edges have to become active as soon as their starting nodes become active.

The cascading behavior in this graph starts at node 1, which is in the target

set.

In the next round (figure 7b), only node 2, but not node 4 is being activated

(which is a violation of the propagation model).
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In the final round (figure 7c), node 4 is activated by the edge starting at

node 1 and node 3 is being activated by the edge starting at node 2. After

that, all the nodes have been activated. The edge between node 3 and node 4

does not do any ”harm” anymore since when the edge becomes active, node

3 has already been activated. However, the shown propagation violates the

rule that edges must become active as soon as their starting nodes become

active. When taking into account this rule, node 4 would become active at

the same time as node 2, and therefore node 3 would receive +1 plus −1

influence from nodes 2 and 4, respectively, which in sum is not enough to

overcome its threshold equal to 1 and activate it. Therefore, the shown so-

lution is not valid.

When respecting the rule that edges must transmit influence as soon as their

starting edges become active, no valid target set smaller than two nodes can

be found for this graph.

Without the appropriate constraints, the LP algorithm will activate edges

with negative edge weights as late as possible. Yet the propagation model

demands a node to become active as soon as its received influence reaches

or exceeds its threshold. In order to ensure this to be the case in the chosen

solution, the LP model has a to have a constraint ensuring there is no lag

between activation of a node and its outgoing edges.

8.2.2 Keeping Activated Nodes Active

It must be possible for a vertex, on which negative influence is being exerted,

to be active in case it has been activated in a prior round. In figure 9, node 2

has been activated in round 2 because it has received influence of an amount

greater or equal to its threshold. The same is the case for node 3 in round

3. In round 4, the total influence received by node 2 is now equal to zero.

A constraint strictly demanding that the influence received must be greater

or equal than the threshold of a node would forbid the node 2 to be active
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(a)

Figure 8: A Graph with a negative edge

in round 4. This would violate the rule that a once activated node must

stay active. The problem can be solved by introducing a constant li, which

for every node i equals the sum of its negative ingoing edges. In the graph

depicted in figure 9, the constant l2 is equal to −1.

The term li · xti is being added to the right hand side of the of the influence

constraint:

N∑
j

dji · xt−1j ≤ (hi − 1) + (hi + li) · xti ∀i ∈ N, t ∈ (2..n) (20)

This has the effect that once a node is activated, its total received influence

is allowed to drop below the node’s threshold.

8.2.3 Adaption of the Activation Rule

The constant Di, which denotes the maximum of negative influence a node

can receive from its neighbors, is also introduced. Both constants li and Di

are products of a preprocessing algorithm that can run in O(n2) time.

If a vertex i gets activated in time step t, its variable xti is equal to 1, it is 0

otherwise.

The value to minimize is the number of nodes to be active initially. A node

is active initially if its value si is equal to 1, it is 0 otherwise.
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The entire LP formulation is like follows:

min
∑
i∈N

si (21)

s.t. l ≤
∑
i∈N

xli (22)∑
j∈N

dji · xt−1j ≤ (hi − 1) + (hi + li) · xti ∀i ∈ N, t ∈ (2..n)

(23)

hi · xti ≤ (hi +Di) · [xt−1i + (1− xti)] +
N∑
j

dji · xt−1j ∀i ∈ N, t ∈ (2..n)

(24)

xt−1i ≤ xti ∀i ∈ N, t ∈ (2..n)

(25)

x1i ≤ si ∀i ∈ N
(26)

si, x
t
i ∈ {0, 1} ∀i ∈ N, t ∈ N

(27)

The size of the target set is to be minimized.(21) The sum of nodes activated

in round l has to be at least as big as the predefined value l.(22) Nodes are

active if they have been so in the previous time step, or if the sum of their

active incoming nodes reaches their threshold, adjusted by the maximum of

negative influence the node can receive. (23) Nodes may only change from

inactive to active if the amount of influence received exceeds their threshold.

The constant Di is needed to account for already active nodes that become

subject to negative influence of neighbors. (24) Nodes cannot be deactivated.

(25) In the first round, only the target set nodes are active. (26) The variables

for the target set and activation are binary values. (27)
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9 Experiments

Above model has been run as a CPLEX script in IBM CPLEX Optimization

Studio, Version 12.7.1.0.

9.1 Graph Instances

In the following experiments data, some differences between graphs with

strictly positive edge weights and arbitrary edge weights shall be shown.

Two kinds of graphs have been created:

• Random Graphs generated by a C++-script, in which the number of

vertices and directed edges and a range for edge weights can be entered.

In the script, the predefined edges get assigned randomly to a pair of

vertices. Graph instances have been generated with degrees in the

range between 2 and 8, edge weights are distributed equally between -5

and 5 in the case of graphs with arbitrary edge weights, and between 1

and 5 in the case of positive edge weights. The threshold of each node

is a random number between 1 and the node’s indegree.

• Small-World Graphs generated with the Boost (2018) C++ library.

As for the Random Graphs, the number of nodes and the range for the

edge weights can be defined. The parameters rewiring probability and

degree can be entered. The degree must be a multiple of 2. For the

case of the degree being equal to two, a graph, in which each vertex i

is connected to the nodes i − 1 and i + 1 (resembling a ring) is being

generated. For the degree being equal to four, each vertex i is being

connected to i − 2, i − 1, i + 1, i + 2. After constructing the net-

work, each edge changes one of its ends to any other random node with

the probability equal to the rewiring probability. As with the random

graphs, the edge weights are drawn from a uniform distribution over

the range between -5 and +5, unless defined otherwise, and the thresh-
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old of each node is a random integer between 1 and the node’s indegree.

9.2 Computation Time of the Algorithm

In the following plots each point represents the calculation time in ticks of

graph instances of sizes up to 500 nodes. As can be seen, there is a positive

relation between the node count of an instance and the time to compute its

target set, but what is a far more decisive factor is the density of the graph.

The value d represented in the plot is the upper bound for the average node

count in each graph. (In each graph, each dth node had a chance to receive

a non-zero edge.)

The graphs in figure 10 show the computation time in seconds (one sec-

ond is supposed to equal 10000 ticks) for graphs with randomly assigned

edges (where self-edges are not allowed) and edge weights between -5 and

+5 (fig. 9a) and Small-World Graph instances with a rewiring probability of

10%(fig. 9b). The parameter d represents the approximate average degree

(for some graphs, the actual average degree deviates marginally as a result

of the random graph generation).

It can be observed that the node count of a graph seems to influence the

time needed for calculating the target set by a large amount. It also can be

observed that the calculation time varies stronger with higher density of the

graph.

In figure 11, the calculation of the same instances is shown by their edge

count:

9.3 The Effect of Rewiring Probability and Nodes to

be Activated

Figure 12 shows graph instances with a size of 100 nodes. The graphs are

small-world graphs, in which the nodes have an average degree of 2. The plot
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(a) (b)

Figure 9: Calculation time per number of nodes for (a) Random-Graph instances
with arbitrary edges(b) Real-World Graph instances with arbitrary edges
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(a) (b)

Figure 10: Calculation time per number of edges for (a) Random-Graph instances
with arbitrary edges(b) Real-World Graph instances with arbitrary edges
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shows both graphs with positive edge weights (equally distributed between

1 and 5) and arbitrary edge weights (between -5 and 5). For each of the two

types of graphs, the rewiring coefficient has been set either to zero (the graph

resembles a circle), to 0.1 (10% of the edges have been randomly changed)

or to 0.5 (50% of the edges have been changed).

The x-Axis shows the number of nodes to be activated (l/n), the y-axis the

average size of one optimal target set of all instances of that graph variant

and activation constraint. It is evident that the rewiring constraint does not

have significant influence on the size of the target set in graphs of the selected

parameters, whereas the weight of the edges has.

Figure 13 shows for Small-World graphs with edge weights between -5

and +5, a rewiring probability of 10%, an average degree of 2 and various

size, how the size of the optimal target set increases with raising the amount

of the graph to be activated (l/n). It is evident that a certain activation con-

straint requires a certain ratio of nodes in the target set, no matter the graph

size. For instance, to activate 100% of the nodes, 60% of the nodes must on

average be in the target set, which is true for instances of all observed sizes

for these graph parameters.

9.4 Influence of Graph Size and Structure on the Size

of the Target Set

For low average degree values, Small-World Graphs (other than Random

Graphs) consist of on single connected component.

The following plots show the size of the Target Set for Graphs of a node

count of up to 500 and average degrees between 2 and 6. In figure 13, optimal

solutions to instances of varying sizes of Random Graphs and Small-World

Graphs with rewiring probability of 0.1 are being compared. All graphs have

an average edge degree of 4. As we can see, the consequences of the graph
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Figure 11: Target set sizes for graphs of different rewiring coefficients and number
of nodes to be activated.
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Figure 12: Relative target set sizes for graph instances with different number of
nodes to be activated.
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topology discussed earlier do not seem to apply for graphs of arbitrary edge

weights. The feature of possessing a Small-World-like structure seems to

have the effect that more nodes need to be taken into the target set in order

to counterbalance the effect of negative influence.

Figure 13: Size of the target sets of Random and Small-World Graphs

The Size of the Target Set of a Graph instance depends on parameters

like size and density of the graph, edge distribution, nodes to be activated,

and edge weights.

As we can see, there is a positive relation between graph size and size

of the target set, and graphs with a higher average degree have small target
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sets (at least for a rewiring probability of 10 per cent). I can be seen that

for the graph with purely positive edges, as soon as the degree exceeds the

value of vertices, one node is sufficient to activate all nodes of the target set.

For an average degree of 2, the size of the target set increases almost linear

with the node count of the graph. With the examined graphs with arbitrary

edges, the size of the target set seemed to be independent of the degree.

Having a look at the size of the target set by node size for larger instances

(fig. 13), the overall impression is the same.

9.5 Real-World Instances

The following graph instances were taken from a dataset provided by Leskovec

et al. (2010). It is data from the consumer review site ’Epinions.com’. On

this site, consumers can post reviews on products as well as rate each other

on their trustworthiness. It is possible to give either a positive or a negative

rating. The data was remodeled in the following form: The weight of a di-

rected edge between i and j equals +1, if user j trusts user i (or equal to −1

in the case of distrust). The threshold for each user to be convinced was set

to 1. The entire graph contains 131828 nodes and 841372 edges, i.e. there

exist on average about 6 ratings per person. In the plot the size of the target

set with an increasing subset of the graph can be seen. For each subset,

a predetermined number of nodes together with their respective edges have

been chosen arbitrarily from the entire set.
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(a)

ption
(b)

(c)

Figure 14: Target set sizes for (a) Real-World Graph instances with positive
edges (b) Real-World Graph instances with arbitrary edges (c) Random-Graph
instances with arbitrary edges
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(a) (b)

Figure 15: Target set sizes for subsets of the ’Epinions.com’ dataset by (a)
number of nodes (b) number of edges
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10 Conclusion

This master’s thesis has reasoned, why the Target Set Selection Problem

(TSSP) is of high relevance to research topics of gaining importance. The

impact of graph properties on the complexity of solving the TSSP was shown.

For the case of graphs with arbitrary edge weights, a novel integer linear

programming formulation has been established and it has been shown where

the pitfalls of finding targets sets in graphs with arbitrary edge weights are.

For instances with different structural features, as well as for real-world data,

solutions have been found and analyzed. One of the findings is, that even

more than the size of the instance, the network density leads to a great

increase in calculation time.

In an increasingly interconnected world, small causes can have large effects

due to propagation processes. Therefore, it is important to develop models

that are closer to reality and to deepen the understanding of the effect of

network features on propagation. This thesis is meant to do its humble

contribution to this great challenge.

45



References

Chalee Asavathiratham, Sandip Roy, Bernard Lesieutre, and George Vergh-

ese. The influence model. IEEE Control Systems, 21(6):52–64, 2001.

Robert Axelrod. The dissemination of culture: A model with local conver-

gence and global polarization. Journal of conflict resolution, 41(2):203–226,

1997.
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university press, 2016.

Peter S Bearman, James Moody, and Katherine Stovel. Chains of affec-

tion: The structure of adolescent romantic and sexual networks. American

journal of sociology, 110(1):44–91, 2004.

Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman.

Treewidth governs the complexity of target set selection. Discrete Op-

timization, 8(1):87–96, 2011.
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André Nichterlein, Rolf Niedermeier, Johannes Uhlmann, and Mathias

Weller. On tractable cases of target set selection. Social Network Analysis

and Mining, 3(2):233–256, 2013.

Nishith Pathak, Arindam Banerjee, and Jaideep Srivastava. A generalized

linear threshold model for multiple cascades. In 2010 IEEE International

Conference on Data Mining, pages 965–970. IEEE, 2010.

David Peleg. Local majorities, coalitions and monopolies in graphs: a review.

Theoretical Computer Science, 282(2):231–257, 2002.

Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites

for viral marketing. In Proceedings of the eighth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 61–70.

ACM, 2002.

Mark DF Shirley and Steve P Rushton. The impacts of network topology on

disease spread. Ecological Complexity, 2(3):287–299, 2005.
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Appendices

A Generated Graph instances

This is an extract of the solutions for the instances with mixed edge weights.

This is an extract of the solutions for the instances with arbitrary edge

weights:

l n edges targetset negativeedges positiveedges

100 100 370 35 156 214

200 200 734 96 352 382

300 300 1,106 143 528 578

400 400 1,478 187 724 754

500 500 1,812 245 906 906

700 700 2,568 360 1,316 1,252
These are the solutions for the graphs with positive edge weights:

l n edges targetset negativeedges positiveedges

100 100 200 21 0 200

200 200 400 39 0 400

300 300 600 68 0 600

400 400 800 83 0 800

500 500 1,000 113 0 1,000

600 600 1,200 130 0 1,200
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