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Abstract

We address the one-to-one multi-commodity pickup and delivery traveling sales-
man problem (m-PDTSP) which is a generalization of the TSP and arises in
several transportation and logistics applications. The objective is to find a
minimum-cost directed Hamiltonian path which starts and ends at given de-
pot nodes and such that the demand of each given commodity is transported
from the associated source to its destination and the vehicle capacity is never
exceeded. In contrast, the many-to-many one-commodity pickup and delivery
traveling salesman problem (1-PDTSP), just considers a single commodity and
each node can be a source or target for units of this commodity. We show that
the m-PDTSP is equivalent to the 1-PDTSP with additional precedence con-
straints defined by the source-destination pairs for each commodity and explore
several models based on this equivalence. In particular, we consider layered
graph models for the capacity constraints and introduce new valid inequalities
for the precedence relations. Especially for tightly capacitated instances with
a large number of commodities our branch-and-cut algorithms outperform the
existing approaches. For the uncapacitated m-PDTSP (which is known as the
sequential ordering problem) we are able to solve to optimality several open
instances from the TSPLIB and SOPLIB.

Keywords: Transportation, Traveling Salesman, Sequential ordering problem,
Pickup and Delivery, Precedence constraints

1. Introduction

In this paper we propose a new approach for the one-to-one multi-com-
modity pickup and delivery traveling salesman problem (m-PDTSP) introduced
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by Hernández-Pérez & Salazar-González (2009). The problem arises in several
transportation and logistics applications. The m-PDTSP generalizes the well
known travelling salesman problem (TSP) as well as two other variants which in
turn also generalize the TSP. To better contextualize the m-PDTSP we will start
by introducing briefly the other three variants, pointing out relations between
the four problems as well as stating one of the main results of this paper.

We first consider the TSP (Lawler et al., 1985), or more precisely the asym-
metric version since all the problems discussed here are defined in a directed
graph G = (V,A). For each arc (i, j) ∈ A, a travel distance (or cost) cij of
going from i to j is given. The objective is to find a minimum cost Hamilto-
nian tour. Many formulations have been presented for this problem (see, for
instance Roberti & Toth (2012), as probably the latest such reference) and we
also refer the reader to the well known formulation by Dantzig et al. (1954)
(DFJ) that will be stated in Section 3 as a subformulation for all the formula-
tions presented and discussed in this paper.

The first generalization we consider is the precedence constrained TSP (PC-
TSP) where a set K of pairs of nodes (sk, dk),∀k ∈ K, is given as an input of
the problem. In this variant we consider a special node, node 0 as a depot and
where the tour starts and ends. As before, the objective is to find a minimum
cost Hamiltonian circuit, but now we have the additional constraint that for
each k ∈ K, node sk must precede node dk in the tour. We refer the reader to
the papers by Balas et al. (1995), Ascheuer et al. (2000), and Gouveia & Pesneau
(2006). Cut-like inequalities specific for the precedence case and generalizing
the well known cut inequalities that arise in the DFJ formulation, have been
proposed in the first paper. These sets of constraints will be referred to in
Section 4. We also observe that this problem is often defined as searching for
a minimum cost Hamiltonian path between a source node 0 and destination
node n + 1. The two variants are obviously equivalent. Also, the PCTSP is
known as the sequential ordering problem (SOP). From now on, we will keep the
Hamiltonian path alternative for describing the subsequent variants including
the problem studied in this paper.

A second variant of the TSP is the so-called many-to-many one-commodity
pickup and delivery traveling salesman problem (1-PDTSP) and has been in-
troduced by Hernández-Pérez & Salazar-González (2003). In this problem and
as stated before, we consider a node set V with a start and end depot 0 and
n+ 1, respectively, and the set of customers Vc = {1, ..., n}. We also consider a
vehicle of capacity Q and a single commodity, and each node can be a source or
target for units of this commodity. Values ρj ,∀j ∈ V , represent the customer
demands: Nodes with ρj > 0 and ρj < 0 are denoted pickup and delivery cus-
tomers, respectively. Nodes with ρj = 0 also need to be visited without changing
the vehicle load. Again, we want to find a Hamiltonian path from 0 to n+1 sat-
isfying all customer demands and the given vehicle capacity Q. It is NP-hard
to find a feasible solution for the 1-PDTSP as shown by Hernández-Pérez &
Salazar-González (2003). The papers by Hernández-Pérez & Salazar-González
(2004, 2007) present several models and valid inequalities for the 1-PDTSP and
branch-and-cut algorithms to solve it. One of these models will be reviewed in
Section 4. Clearly, if one ignores the vehicle capacity, the 1-PDTSP reduces to
the TSP.

So far, we have described two variants that generalize the TSP. As mentioned
before, in this paper we study a new approach for the m-PDTSP. This problem
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can also be viewed as a generalization of the SOP and the 1-PDTSP.
In the m-PDTSP there are m commodities K = {1, ...,m}, each k ∈ K

associated with a demand qk, a source sk ∈ V \ {n + 1}, and a destination
dk ∈ V \ {0}. We assume sk 6= dk and qk > 0. A customer j can be the source
of several commodities and the destination of other commodities. As in the 1-
PDTSP we also consider a vehicle capacity Q > 0. We assume that qk ≤ Q for
all k ∈ K. The objective is to find a minimum cost Hamiltonian path between
nodes 0 and n + 1, such that i) for each commodity k ∈ K source sk is visited
before destination dk, ii) qk units are transported from sk to dk, and iii) the
vehicle capacity is an upper bound of the vehicle load for each arc on the path
from 0 to n+ 1.

As pointed out by Hernández-Pérez & Salazar-González (2009) the m-PD-
TSP generalizes the 1-PDTSP. We simply aggregate the different flows into a
single one. The customer demands of the equivalent 1-PDTSP are defined by the
load changes when the vehicle visits a customer in the m-PDTSP. Again, and as
also pointed out in Hernández-Pérez & Salazar-González (2009), if one ignores
the vehicle capacity in the m-PDTSP, one obtains the SOP since the precedence
between source and destination for each commodity must be maintained.

The m-PDTSP isNP-hard since it generalizes all the variants described here
which are also known to be NP-hard. Hernández-Pérez & Salazar-González
(2009) present two solution approaches, both based on Benders decomposition of
a path and a multi-commodity flow model, respectively. The multi-commodity
flow model will be revisited in Section 3. Their branch-and-cut algorithms are
based on models in the natural variable space, i.e., only use binary variables for
arcs A. These approaches usually achieve excellent results in terms of solution
runtime for loosely-constrained problem instances, i.e., when only a few com-
modities have to be considered or the given vehicle capacity is large in relation
to the demands. In these cases only a few violated inequalities have to be added
within the cutting plane phase. Additionally, the reduced size of the initial
model makes it possible to quickly solve the corresponding linear programming
(LP) relaxation. However, when considering problem instances with many com-
modities and/or a tight vehicle capacity several weaknesses of these approaches
show up, namely that the basic model provides only a quite weak LP relaxation
value leading to a large number of branch-and-bound nodes and making it neces-
sary to add many violated inequalities. Rodŕıguez-Mart́ın & Salazar-González
(2012) also propose several heuristic approaches for the m-PDTSP to obtain
high-quality solutions for larger instances for which exact approaches cannot
obtain satisfying results within reasonable time. They present a simple nearest
neighbor heuristic to construct a solution followed by an improvement phase
based on 2-opt, 3-opt, and restricted mixed integer programming neighborhood
structures. We conclude this literature review by pointing to the overview on
further pickup and delivery problems given in Berbeglia et al. (2007).

The models in this paper are mostly based on a new result stating that the
m-PDTSP is equivalent to the 1-PDTSP with additional precedence constraints
defined by the origin-destination pairs for each commodity. That is, in a loose
sense the m-PDTSP combines together the two previous variants. The advan-
tage of using this relation to model the m-PDTSP is that we are able to model
the capacity constraints just by considering a single commodity and this helps
considerably in running times. The precedence relations are ensured separately
by adding valid inequalities from the SOP, see Balas et al. (1995) and Ascheuer
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et al. (2000). We also introduce new inequalities based on sequences and logical
implications of precedence relations which are able to further close the LP gaps,
especially for instances with a large number of precedence constraints.

Also, we present alternative ways to model the capacity constraints based on
load-dependent layered graphs which improve the LP bounds for tight capacities.
In particular we consider a formulation based on a 3-dimensional layered graph
that combines position and load together and leads to tighter bounds at the
cost of a larger sized model.

Our branch-and-cut algorithm to solve the m-PDTSP consists of several
preprocessing methods, primal heuristics, and separation routines for the SOP
inequalities. Especially for tightly capacitated instances with a large number of
commodities we are able to outperform the approaches by Hernández-Pérez &
Salazar-González (2009). In our experiments, we also consider the uncapacitated
variant of the m-PDTSP, i.e., the SOP. Here, an adapted variant of our branch-
and-cut algorithm is able to solve to optimality several open instances from the
TSPLIB and SOPLIB.

The remainder of the article is structured as follows: In Section 2 we present
reduction and preprocessing techniques for the m-PDTSP, Section 3 revises
existing models, Section 4 discusses the transformation to a single-commodity
problem, Section 5 introduces layered graph models for the capacity constraints,
Section 6 describes our branch-and-cut algorithms, Section 7 shows experimental
results, and Section 8 concludes the paper.

2. Preprocessing

In this section we discuss some problem reductions and relevant problem
properties which will be used to reduce and strengthen the models discussed
in this paper. Additionally, these tests and properties may lead to an early
detection of infeasibility of an instance.

2.1. Commodities

A commodity k ∈ K is called transitive if there exist commodities k1, k2 ∈
K \ {k} with sk1 = sk, dk1 = sk2 , dk2 = dk. It can be easily seen that the
set of feasible solutions is not modified if a transitive commodity is removed
from set K and the demands of the corresponding commodities k1 and k2 are
appropriately modified, i.e., q′k1 = qk1 + qk and q′k2 = qk2 + qk. We perform this
reduction step for all transitive commodities.

2.2. Precedence Relations

The source-destination pairs (sk, dk),∀k ∈ K, induce an acyclic precedence
graph P = (V,R) with R being the transitive closure of R′ = {(sk, dk) : k ∈
K} ∪ {(0, i) : i ∈ V \ {0}} ∪ {(i, n+ 1) : i ∈ V \ {n+ 1}}. Clearly, arc (j, i) ∈ A
can be removed from the original graph G if (i, j) ∈ R since it cannot appear in
any feasible solution. Additionally, arc (i, j) ∈ A can be removed if (i, j) ∈ R
is transitive, i.e., for some k ∈ V, (i, k), (k, j) ∈ R (cf. Balas et al., 1995). Let
R̃ ⊆ R be the subset of non-transitive precedence relations.
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2.3. Vehicle Load Bounds
For each node j ∈ V we define net demands ρj :=

∑
k:j=sk

qk −
∑
k:j=dk

qk,
representing the load change of the vehicle when visiting node j ∈ V . For each
arc (i, j) ∈ A we compute lower and upper bounds lij and uij on the vehicle load,
respectively. The load on arcs going out of and coming in to the depot is fixed
and defined by the commodities starting or ending in the depot, i.e., l0i = u0i =∑
k∈K,sk=0 qk,∀(0, i) ∈ A, and li,n+1 = ui,n+1 =

∑
k∈K,dk=n+1 qk,∀(i, n + 1) ∈

A. This situation is different from the 1-PDTSP where the initial vehicle load
cannot be derived a priori since it depends on the visiting sequence. To calculate
the load bounds for all other arcs (i, j) ∈ A, i 6= 0, j 6= n + 1, we use some
ideas from Hernández-Pérez & Salazar-González (2009) and extend them in
the following way. For each commodity k ∈ K we define the set of nodes
V in
k ⊆ V which have to be on the path from sk to dk in any feasible solution.

Set V out
k ⊂ V includes nodes which cannot be on the path from sk to dk in any

feasible solution:

V in
k := {i ∈ V : i = sk ∨ i = dk ∨ (sk, i), (i, dk) ∈ R}

V out
k := {i ∈ V : (i, sk) ∈ R ∨ (dk, i) ∈ R}

Similarly, we define set Ain
k consisting of arcs (i, j) which – if used in a solution

– have to be on the path from sk to dk. Set Aout
k includes arcs (i, j) which – if

used in a solution – cannot be on the path from sk to dk:

Ain
k := {(i, j) ∈ A : i ∈ V in

k \ {dk} ∨ j ∈ V in
k \ {sk} ∨ (sk, i), (j, dk) ∈ R}

Aout
k := {(i, j) ∈ A : i = dk ∨ j = sk ∨ i ∈ V out

k ∨ j ∈ V out
k }

Then, lower and upper load bounds for the flows in the arcs can be defined as
follows:

lij =
∑

k:(i,j)∈Ain
k

qk, uij = min{Q−max{0,−ρi, ρj},
∑

k:(i,j)/∈Aout
k

qk}

To further strengthen the load bounds we consider all feasible paths Phijk of
length three and update the bounds in the following way:

lij = min
Phijk

max{lhi + ρi, lij , ljk − ρj}, uij = max
Phijk

min{uhi + ρi, uij , ujk − ρj}

These bounds are used for tightening the models presented in this article.
Furthermore, for each arc (i, j) ∈ A we define sets A−ij and A+

ij of all feasible
preceding and succeeding arcs, respectively:

A−ij := {(k, i) ∈ A : k 6= j, (j, k) /∈ R, (k, l) /∈ R for some l 6= i with (l, j) ∈ R}
A+
ij := {(j, k) ∈ A : k 6= i, (k, i) /∈ R, (l, k) /∈ R for some l 6= j with (i, l) ∈ R}

Then, for each arc (i, j) ∈ A, i 6= 0, j 6= n+1, we define lower and upper bounds
l−ij and u−ij , respectively, on the vehicle load coming into node i and bounds l+ij
and u+ij on the load going out of node j, assuming that arc (i, j) is traversed, as
follows:

l−ij =
∑

k:A−ij⊆Ain
k ∨(i 6=sk∧(i,j)∈A

in
k )

qk, u−ij = min{uij − ρi, max
(k,i)∈A

uki}

l+ij =
∑

k:A+
ij⊆Ain

k ∨(j 6=dk∧(i,j)∈A
in
k )

qk, u+ij = min{uij + ρj , max
(j,k)∈A

ujk}
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Arcs (i, j) ∈ A can be removed if lij > uij or l−ij > u−ij or l+ij > u+ij . These
preprocessing steps may help to decide in an early stage of the solution process
whether a particular problem instance is infeasible or unconstrained with respect
to a given vehicle capacity Q.

3. Multi-Commodity Flow Model for m-PDTSP (Hernández-Pérez
& Salazar-González, 2009)

Before describing the models we introduce some notation: The set of arcs
going out of some set S ⊂ V is denoted by δ+(S) := {(i, j) ∈ A : i ∈ S, j /∈ S}.
Similarly, we use δ−(S) := {(i, j) ∈ A : i /∈ S, j ∈ S} for the set of arcs
coming into set S. If S = {i} we simply write δ+(i) and δ−(i), respectively.
Furthermore, for a set of arcs A′ ⊆ A we write v(A′) :=

∑
(i,j)∈A′ vij to denote

the sum of variables v associated to arcs A′. We write v(S) :=
∑

(i,j)∈A,i,j∈S vij
for the sum of variables of arcs within node set S ⊆ V . Similarly, we write
v(S, S′) :=

∑
(i,j)∈A,i∈S,j∈S′ vij for the sum of variables of arcs going from set

S ⊆ V to set S′ ⊆ V . ML denotes the LP relaxation of model M . F (M) denotes
the set of feasible solutions of model M . Proj v(S) denotes the projection of set
S into the space defined by variables v.

Since the feasible solutions for the problem under study are Hamiltonian
paths from 0 to n+ 1, we consider the following generic model for the problem.
We use binary variables xij ,∀(i, j) ∈ A:

min
∑

(i,j)∈A

cijxij (1)

s.t. x(δ+(i)) = 1 ∀i ∈ V \ {n+ 1} (2)

x(δ−(i)) = 1 ∀i ∈ V \ {0} (3)

x(δ+(S)) ≥ 1 ∀S ⊆ V \ {n+ 1} (4)

{(i, j) : xij = 1} supports flows for each k ∈ K (5)

and satisfies vehicle capacity

xij ∈ {0, 1} ∀(i, j) ∈ A (6)

In some of the models presented next we will provide alternative ways of model-
ing the connectivity constraints (4). These situations will be indicated later
on but for simplicity we present the generic model with (4) which are the
most well known constraints for guaranteeing connectivity. The system (1)–
(4) and (6) is the well known DFJ model mentioned in Section 1. These con-
straints are also used in models for the 1-PDTSP and m-PDTSP in previous
papers (e.g., Hernández-Pérez & Salazar-González, 2004, 2007, 2009). Note
that constraints (4), although exponential in number, can be easily implicitly
included in the model by a cutting plane approach based on finding violated
inequalities with max-flow computations (see, e.g., Padberg & Rinaldi, 1991).

The flow model by Hernández-Pérez & Salazar-González (2009) is based
on the generic scheme mentioned before. Flows and the vehicle capacity in
constraints (5) are ensured by adding for each commodity k ∈ K and each arc
(i, j) ∈ A, the flow variable fkij indicating the flow on arc (i, j) of commodity k
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as well as the following set of flow conservation and capacity constraints:

fk(δ+(i))− fk(δ−(i)) =

 qk if i = sk
−qk if i = dk
0 else

∀i ∈ V \ V out
k ,∀k ∈ K (7)

∑
k∈K

fkij ≤ Qxij ∀(i, j) ∈ A (8)

fkij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K (9)

Note that we have reduced the size of the model by eliminating the flow con-
servation constraints for all nodes in V out

k for each commodity k. Also and as
mentioned by Hernández-Pérez & Salazar-González (2009) the LP relaxation of
the model can be improved by replacing constraints (8)–(9) with the following
well known modeling strengthening constraints of multi-commodity flow models
extended by information obtained in preprocessing:

lijxij ≤
∑
k∈K

fkij ≤ uijxij ∀(i, j) ∈ A (10)

0 ≤ fkij

 = 0 if (i, j) ∈ Aout
k

= qkxij if (i, j) ∈ Ain
k

≤ qkxij else
∀(i, j) ∈ A,∀k ∈ K (11)

We denote by MCF the generic model (1)–(4), (6), with the multi-commodity
flow system (7), (10)–(11).

4. Relating the m-PDTSP to the 1-PDTSP (with Precedence Con-
straints)

In this section we suggest new models for the m-PDTSP that are motivated
by observing that the m-PDTSP is equivalent to the 1-PDTSP with additional
precedence constraints defined by the origin-destination pairs (sk, dk) for each
commodity k ∈ K. As far as we know, and as pointed out in the introduction
this “equivalence” relation has been neither stated nor used before. Weaker
related relations have been pointed out by Hernández-Pérez & Salazar-González
(2009) stating that the two problems: i) the 1-PDTSP using net demands ρ
(without considering any precedence relations) and ii) the TSP with precedence
constraints defined by the commodities (with unlimited vehicle capacity) are
relaxations of the m-PDTSP. Essentially, we are saying that by adequately
combining these two relaxed problems we obtain a problem equivalent to the
m-PDTSP.

To motivate the relation between the m-PDTSP and the 1-PDTSP with
precedence constraints, we show next how to transform the MCF model de-
scribed in the previous section into a different and equivalent model where this
relation is enhanced.

4.1. Introducing Scaled Flow Variables

We introduce scaled flow variables gkij and use equalities

fkij = qkg
k
ij ∀(i, j) ∈ A,∀k ∈ K, (12)
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to rewrite (7) and (11) as follows:

gk(δ+(i))− gk(δ−(i)) =

 1 if i = sk
−1 if i = dk
0 else

∀i ∈ V \ V out
k ,∀k ∈ K (13)

0 ≤ gkij

 = 0 if (i, j) ∈ Aout
k

= xij if (i, j) ∈ Ain
k

≤ xij else
∀(i, j) ∈ A,∀k ∈ K (14)

4.2. Aggregating the Flows

Next, we sum up equalities (7) for all commodities k ∈ K and obtain:∑
k∈K

fk(δ+(i))−
∑
k∈K

fk(δ−(i)) =
∑
k:i=sk

qk −
∑
k:i=dk

qk = ρi ∀i ∈ V (15)

By using aggregated flow variables fij ,∀(i, j) ∈ A, and equalities

fij =
∑
k∈K

fkij ∀(i, j) ∈ A, (16)

we can rewrite the aggregated flow conservation constraints (15) and the capac-
ity constraints (10) as the following single-commodity flow (SCF) system:

f(δ+(i))− f(δ−(i)) = ρi ∀i ∈ V (17)

lijxij ≤ fij ≤ uijxij ∀(i, j) ∈ A (18)

4.3. Combining the Scaled Flow System with the Aggregated Flow System

We denote by “Transformed MCF” (TMCF) the model MCF with the flow
system (7), (10)–(11) on fkij variables replaced by the scaled flow system (13)–

(14) on gkij variables, the aggregated SCF system (17)–(18), and the linking
constraints

fij =
∑
k∈K

qkg
k
ij ∀(i, j) ∈ A. (19)

Table 1 shows the complete model TMCF. It is now easy to see that in terms
of integer solutions, the model TMCF is equivalent to the model MCF. One
direction has already been proved with the given transformation. To see the
reverse situation, note that from a given solution feasible for the model TMCF,
we obtain a feasible solution for the model MCF simply by setting the fkij
variables as defined by linking constraints (12).

Thus, we have just proved that:

Result 4.1. Under the transformation (12) the model TMCF is equivalent to
the model MCF.

Since a similar equivalence holds with respect to the corresponding LP re-
laxations (where we replace (6) with 0 ≤ xij ≤ 1,∀(i, j) ∈ A), we can conclude
that the two models provide the same LP bound.
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Table 1: Model TMCF

min
∑

(i,j)∈A cijxij (1)

x(δ+(i)) = 1 ∀i ∈ V \ {n+ 1} (2)

x(δ−(i)) = 1 ∀i ∈ V \ {0} (3)

x(δ+(S)) ≥ 1 ∀S ⊆ V \ {n+ 1} (4)

xij ∈ {0, 1} ∀(i, j) ∈ A (6)

gk(δ+(i))− gk(δ−(i)) =


1 if i = sk
−1 if i = dk
0 else

∀i ∈ V \ V out
k ,∀k ∈ K (13)

0 ≤ gkij


= 0 if (i, j) ∈ Aout

k

= xij if (i, j) ∈ Ain
k

≤ xij else

∀(i, j) ∈ A,∀k ∈ K (14)

f(δ+(i))− f(δ−(i)) = ρi ∀i ∈ V (17)

lijxij ≤ fij ≤ uijxij ∀(i, j) ∈ A (18)

fij =
∑
k∈K qkg

k
ij ∀(i, j) ∈ A (19)

4.4. Relating the m-PDTSP with the 1-PDTSP with Precedence Constraints

Consider the model that is obtained from TMCF by removing the linking
constraints (19). We denote by Weak TMCF (WTMCF) the model obtained
in this way. We show next that the model WTMCF is still a valid model for
the problem, although, obviously, with a weaker LP relaxation.

Theorem 4.2. Model WTMCF is a valid formulation for the m-PDTSP.

Proof. We show this by induction on the number of commodities K.
m = 1: In case of a single commodity net demand values are set to ρi =

0,∀i ∈ V \ {s1, d1}, and ρs1 = q1 and ρd1 = −q1. Here, we do not even need
to explicitly ensure that s1 is visited before d1 since the SCF system (17)–
(18) already forbids to visit d1 before s1 because of the negative value ρd1
and the lower vehicle load bound 0. The consequence is that the m-PDTSP
with K = {1} is equivalent to the 1-PDTSP which can be modeled by the
generic part (1)–(4), and (6), and flow system (17)–(18) (see Hernández-Pérez
& Salazar-González, 2004).

Inductive step: We assume that model WTMCF is valid for the (m − 1)-
PDTSP with commodities K = {1, ...,m − 1}. We want to show that model
WTMCF stays valid when adding a further commodity m. The additional flow
system (13)–(14), for k = m ensures that sm is visited before dm. Furthermore,
we observe that exactly two net demand values change, i.e., ρ′sm = ρsm +qm and
ρ′dm = ρdm − qm. The SCF inequalities (17)–(18) for nodes i = sm, dm ensure
that the additional demand qm is considered with respect to the vehicle load
bounds.

We observe that the aggregated flow system on variables fij (see third box in
Table 1) guarantees that the capacity constraints and the net demands are satis-
fied and corresponds to the flow system in formulations for the 1-PDTSP (e.g.,
Hernández-Pérez & Salazar-González, 2004, 2007). Also, the gkij system (see
second box in Table 1) guarantees the precedence relations for each commodity
k ∈ K.
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This decomposition puts in evidence the fact that we can model the m-
PDTSP as the 1-PDTSP model together with any set of precedence constraints
guaranteeing the precedence relations defined by the commodity pairs. In the
model WTMCF, these precedence constraints are modelled with the flow sys-
tem (13)–(14) on gkij variables. In the next subsection we will describe a different
alternative.

4.5. Modeling the Precedence Constraints with SOP Inequalities

According to Balas et al. (1995) we consider cut-like inequalities known from
the SOP, i.e., the simple (π, σ)-inequalities which are described as follows: For
each commodity k ∈ K we define a set of relevant nodes V k = V \V out

k and the
corresponding inequalities are defined as follows:

x(S, V k \ S) ≥ 1 ∀S ⊂ V k, sk ∈ S, dk ∈ V k \ S, ∀k ∈ K (20)

Similar to connection cuts (4), these inequalities associated to one particular
commodity k ensure a path from sk to dk in a reduced graph excluding all nodes
which have to be visited before sk or after dk (including nodes 0 and n + 1).
Inequalities (20) can be separated in polynomial time for each commodity k ∈ K
by max-flow computations in a similar way as the connection cuts (4) but in a
support graph induced by node set V k.

We denote by CUTK, the model WTMCF with the flow system (13)–(14)
replaced by SOP cuts (20), i.e., objective (1), degree and connectivity con-
straints (2)–(4), integrality constraints (6), the SCF system (17)–(18), and SOP
cuts (20). As a straightforward consequence of the max-flow min-cut theo-
rem (Ahuja et al., 1993) we can state that the projection of the set of feasible
solutions defined by the flow system (13)–(14) and 0 ≤ xij ≤ 1,∀(i, j) ∈ A, into
the space of the xij variables is defined by the SOP cuts (20) and 0 ≤ xij ≤ 1,
that is:

Result 4.3. Proj x(F (WTMCFL)) = Proj x(F (CUTKL)).

This result states that the bounds obtained from the LP relaxations of model
CUTK and WTMCF are the same. As pointed out in Section 4.4, the model just
obtained produces an LP bound that is weaker than the LP bound produced
by TMCF (since we lose the connection between the two sets of flow variables).
The difference in LP bound is more evident for cases with tight capacity. Never-
theless, for instances with many commodities, models CUTK and/or WTMCF
may be preferable to model TMCF (which is confirmed by our computational
results), since they have far fewer variables.

4.6. Valid Inequalities

We can strengthen all the models discussed above by adding other fami-
lies of precedence related cut-like inequalities to the model. Besides using the
source-target pairs (sk, dk) for each commodity k ∈ K to define associated SOP
inequalities, we consider additional node pairs corresponding to non-transitive
precedence relations starting in depot node 0 or ending in node n+ 1. To define
all of the relevant pairs we consider

R̃ = {(sk, dk) : k ∈ K}
∪ {(0, i) : i ∈ V \ {0, n+ 1}, (j, i) /∈ R,∀j ∈ V \ {0}}
∪ {(i, n+ 1) : i ∈ V \ {0, n+ 1}, (i, j) /∈ R,∀j ∈ V \ {n+ 1}}.
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Similar to the inequalities (20) for each precedence relation (i, j) ∈ R̃ we
define a set of relevant nodes V ij = V \ {k : (k, i) ∈ R ∨ (j, k) ∈ R}. Then, the
corresponding SOP inequalities are given as follows:

x(S, V ij \ S) ≥ 1 ∀S ⊂ V ij , i ∈ S, j ∈ V ij \ S, ∀(i, j) ∈ R̃ (21)

If i = 0, inequalities (21) are known as weak σ-inequalities, if j = n + 1 as
weak π-inequalities, and if i 6= 0 and j 6= n + 1 we obtain the simple (π, σ)-
inequalities (Balas et al., 1995), as already mentioned in Subsection 4.5. It
is easy to see that these inequalities dominate connection cuts (4) due to the
inclusion of the additional node pairs in R̃. We denote model CUTK with
inequalities (20) replaced by (21) by CUTR, i.e., objective (1), degree con-
straints (2)–(3), integrality constraints (6), the SCF system (17)–(18), and SOP
cuts (21). Note that the LP bound obtained from model CUTR is at least
as good as the one from model CUTK and our experimental results indicate
that for many instances it is clearly better. Additionally, for any violated SOP
cut (21) we check if it can be lifted to a stronger π-, σ-, or (π, σ)-inequality: De-
pending on set S we may exclude further cut arcs on the left-hand side of (21).
For details we refer to Balas et al. (1995).

Balas et al. (1995) have also proposed a different set of inequalities, the
so called precedence cycle breaking constraints (PCB). We consider a sub-
set of these constraints with S ⊂ V \ {n + 1} and i1, i3 ∈ S, i2 /∈ S, with
(i1, i2), (i2, i3) ∈ R. Then,

x(S, V \ S) ≥ 2. (22)

Essentially, what these inequalities say is that we need to cross the cut from
S to V \ S at least twice, once when going from i1 to i2, and again in the
subpath from node i3 to n+ 1. We generalize the concept motivating inequali-
ties (22) by considering sequences of precedence relations (i1, i2), ..., (ik−1, ik) ∈
R, i1, ..., ik ∈ V \ {n + 1}, for odd values of k ≥ 3. We require all odd indexed
nodes to be in set S ⊂ V \{n+1} and all even indexed nodes to be in set V \S,
i.e., {ih : h ≤ k, h odd} ⊆ S and {ih : h ≤ k, h even} ⊂ V \ S. Due to this node
assignment we have to cross the cut (S, V \ S) at least dk/2e times to ensure a
path from i1 to n+ 1. Thus, the corresponding inequality is defined as

x(S, V \ S) ≥ dk/2e. (23)

Note that due to the rounded right-hand sided value, the inequalities (23) for
sequences with k even are dominated by inequalities (23) for the same sequences
without the last node. Note also that sequences including transitive precedence
relations are dominated by the ones consisting only of non-transitive relations, as
shown by Balas et al. (1995) for the PCB inequalities. To find non-dominated
sequences we use transitive relations (i, j) ∈ R \ R̃ with i, j ∈ V \ {n + 1},
and search for the longest path (i = i1, i2, ..., ik = j) in the precedence graph
P . Note that all precedence relations along this path are non-transitive since
otherwise there would be a longer path in P . If k is even we do not consider the
corresponding pair (i, j) ∈ R \ R̃ for inequalities (23) for the reasons explained
above.

Inequalities (22) and (23) can be separated in polynomial time by computing
the max-flow in a support graph G′ = (V ′, A′) with V ′ = V ∪ {s, t} extending
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set V by artificial source and target nodes, and defining A′ = A ∪ {(s, ih) : h ≤
k, h odd} ∪ {(ih, t) : h ≤ k, h even}, connecting the source and target nodes to
the nodes fixed to S and V \S, respectively. The capacities on the arcs incident
to node s and t are set to 1. It is straightforward to see that the minimum cut
(S, V \ S) obtained from the max-flow from s to t is such that the nodes ih for
all h = 1, ..., k, are assigned to the sets as defined above.

Since inequalities (22) and (23) consider the path starting from i1, passing
through all nodes ih, h = 2, ..., k, and ending in an arbitrary node in V \ S, we
can lift these cuts by excluding all nodes which have to be before i1 or after the
successor of ik, i.e., S′ = {j : (j, i1) ∈ R ∨ (ik, j) ∈ R \ R̃}. Thus, we obtain the
lifted inequalities

x(S \ S′, V \ (S ∪ S′)) ≥ dk/2e. (24)

Similar to the SOP cuts (23), inequalities (24) can be separated in polynomial
time in support graph G′′ = (V ′ \ S′, A′ \ {(i, j) : i ∈ S′ ∨ j ∈ S′}).

The sets of inequalities to be presented next are based on logical implica-
tions to fix variables in a branch-and-bound node (Ascheuer et al., 2000). We
adopt the notation from Balas et al. (1995) and write π(j) := {i : (i, j) ∈ R}
for the set of predecessors for node j ∈ V . Similarly, we use σ(i) := {j :
(i, j) ∈ R} to denote the corresponding set of successors. If xij = 1 for an
arc (i, j) ∈ A, i, j ∈ Vc, then other (non-trivial) arcs can be fixed to zero, e.g.,
x(π(i), σ(j)) = x(σ(j), π(i)) = x(σ(i), π(j)) = x(π(j), σ(i)) = 0. We create
valid inequalities based on these implications:

x({i, j}) + x({k, l}) ≤ 1 ∀i, j ∈ Vc, i 6= j,∀k ∈ π(i),∀l ∈ σ(j) (25)

x({i, j}) + x(k, σ(j)) ≤ 1 ∀i, j ∈ Vc, i 6= j,∀k ∈ π(i) (26)

x({i, j}) + x(σ(j), k) ≤ 1 ∀i, j ∈ Vc, i 6= j,∀k ∈ π(i) (27)

x({i, j}) + x(π(i), l) ≤ 1 ∀i, j ∈ Vc, i 6= j,∀l ∈ σ(j) (28)

x({i, j}) + x(l, π(i)) ≤ 1 ∀i, j ∈ Vc, i 6= j,∀l ∈ σ(j) (29)

The validity of these inequalities can be easily shown by using node degree
constraints (2) and (3). We add violated inequalities (25)–(29) within a cutting
plane algorithm by examining them one by one.

Finally, in case of a violated inequality (4), (22), and (23) for some set S we
check if the corresponding rounded capacity cut (Letchford & Salazar-González,
2006) in the context of the m-PDTSP is stronger:

x(δ+(S)) ≥
⌈ ∑

k:sk∈S∧dk /∈S qk

max(i,j)∈δ+(S) uij

⌉
(30)

Note that we can strengthen the right side by using the largest upper load bound
over all cut arcs instead of the vehicle capacity.

5. Layered Graph Models

Models on layered graphs have been shown to provide strong LP bounds and
lead to optimal solutions with short runtimes for several classes of problems,
e.g., for tree problems (Gouveia et al., 2011, 2014b,a; Ruthmair & Raidl, 2011),
TSP variants (Godinho et al., 2011, 2014; Abeledo et al., 2013), and location
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problems (Ljubić & Gollowitzer, 2013). In these formulations paths are modeled
in an expanded layered graph where the layers correspond to the position or time
within the path. Since the layered graphs are acyclic, subtours are eliminated
implicitly by the structure of this graph.

5.1. The Picard and Queyranne Formulation for the Capacity Constraints

In this subsection we show that the model by Picard & Queyranne (1978)
(PQ) can be easily readapted to model the capacity constraints of the aggregated
SCF system (17) and (18). We consider the variables zlij for each arc (i, j) ∈ A
and each possible vehicle load l ∈ Lij := {lij , ..., uij}. Let Li :=

⋃
(i,j)∈A Lij be

the set of possible vehicle loads when leaving node i ∈ V . The load-dependent
PQ system is defined as follows:

zl−ρj (δ−(j)) = zl(δ+(j)) ∀j ∈ Vc,∀l ∈ Lj (31)∑
l∈Lij

zlij = xij ∀(i, j) ∈ A (32)

zlij ≥ 0 ∀(i, j) ∈ A,∀l ∈ Lij (33)

We denote the model CUTR in which the SCF system (17)–(18) is replaced
by system (31)–(33) by LCUTR, i.e., objective (1), degree constraints (2)–(3),
integrality constraints (6), the load-dependent PQ system (31)–(33), and SOP
cuts (21). It is easy to argue (as in Gouveia & Voß, 1995) that the LP bound
of LCUTR is at least as good as the one of CUTR and in fact the experimental
results showed that for many instances it is better. Note that in contrast to the
original time-dependent PQ system the load-dependent PQ system alone is not
sufficient to eliminate subtours since values ρj may also be negative. However,
in the model CUTR as well as in the model LCUTR subtour elimination is
guaranteed by the SOP cuts (21) (which dominate connection cuts (4)).

5.2. Strengthening the Load-Dependent PQ Model

We can view the load-dependent PQ system (31)–(33) as modeling a path
in a layered graph GL = (VL, AL). This layered graph is more complicated than
the layered graph corresponding to the original PQ formulation. In GL a node
jl describes the state when the vehicle leaves node j ∈ V with load l. Node set
VL = {0, n + 1} ∪ {jl : j ∈ Vc, l ∈ Lj} consists of the start and the end depot,
and replicated nodes for all clients for all possible loads. Arc set AL includes

• start depot arcs {(0, jl) : (0, j) ∈ A, l = l0j + ρj = u0j + ρj},

• general arcs {(il, jl+ρj ) : (i, j) ∈ A, i 6= 0, j 6= n+ 1, l ∈ Lij}, and

• end depot arcs {(jl, n+ 1) : (j, n+ 1) ∈ A, l = lj,n+1 = uj,n+1}.

This layered graph is reduced by eliminating all nodes except the depot nodes
which have no incoming or outgoing arcs since they cannot be part of a feasible
solution. An example is shown in Fig.1.

Similar to what has been done in Gouveia et al. (2011) and Godinho et al.
(2014) to redefine cut inequalities in the layered graph, we can also redefine the
SOP cuts (21) in the load-based layered graph GL to improve the LP relaxation
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Figure 1: In the left a problem instance with graph G with n = 4, a set of commodities,
and the aggregated node demands is shown. In the right the corresponding (preprocessed)
load-dependent layered graph GL for vehicle capacity Q = 3 is shown. The set of bold arcs
in both graphs represent the same feasible solution.

of model LCUTR. Let SL := {jl ∈ VL : j ∈ S} denote the set of all copies of
nodes in some set S ⊆ V . The corresponding SOP cuts in GL are defined as:

z(S, V ijL \ S) ≥ 1 ∀S ⊂ V ijL , {i}L ⊆ S, {j}L ⊆ V ijL \ S,∀(i, j) ∈ R̃ (34)

These inequalities can be interpreted as the SOP cuts (21) lifted in the load
layered graph GL. It is easy to see that SOP cuts (21) are implied by (34) since
the subset of (34) in which all copies of nodes v ∈ V ij \ {i, j} belong either to S
or to V ijL \S gives exactly the SOP cuts (21) for a precedence relation (i, j) ∈ R̃.
We denote by LCUTR+, the model LCUTR where (21) are replaced by (34),
i.e., objective (1), degree constraints (2)–(3), integrality constraints (6), the
load-dependent PQ system (31)–(33), and SOP cuts (34) in GL. The previous
observation implies that the LP relaxation of LCUTR+ is not worse than the
LP relaxation of LCUTR, and similar to what happens with model CUTR, and
as can be seen in Table 2, there is no LP relation between MCF and LCUTR+.

5.3. The Position-Load-Dependent PQ Model

As noted before, the layered graph associated to the load-dependent PQ
system is not acyclic. However, the strong models in Godinho et al. (2011,
2014) explicitly use the fact that the associated layered graphs are acyclic (as in
the original PQ system) since the layers correspond to the positions of the nodes
in the solution. We can derive some information about the position of nodes and
arcs based on the given precedence relations. Let λij , i ∈ V \{n+1}, j ∈ V \{0}
be the length of the longest path in precedence graph P from node i to j with
respect to the number of arcs. Note that the longest path in an acyclic graph can
be computed in time linear in the number of arcs based on topological sorting.

Value αj = λ0j represents a lower bound on the position of node j ∈ Vc in
any feasible tour. Similarly, ωj = n+ 1−λj,n+1 denotes an upper bound on the
position of j ∈ Vc in any feasible tour. Since the positions of the depot nodes
are fixed we set α0 = ω0 = 0 and αn+1 = ωn+1 = n+ 1. Let Pj := {αj , ..., ωj}
be the set of possible positions for node j ∈ V . We also define the set of possible
positions Pij := {max{αi + 1, αj}, ...,min{ωi + 1, ωj}} for each arc (i, j) ∈ A.
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Using this information we propose a combined generalized model that disag-
gregates variables zlij by position. The new variables are defined as zplij represent-
ing a vehicle on arc (i, j) in position p with load l. The position-load-dependent
PQ system is defined as:

zp,l−ρj (δ−(j)) = zp+1,l(δ+(j)) ∀j ∈ Vc,∀p ∈ Pj ,∀l ∈ Lj (35)∑
p∈Pij

∑
l∈Lij

zplij = xij ∀(i, j) ∈ A (36)

zplij ≥ 0 ∀(i, j) ∈ A,∀p ∈ Pij ,∀l ∈ Lij (37)

We observe that we can view these equations in a 3-dimensional layered
graph GPL = (VPL, APL) with two resource dimensions, i.e., the position and
the load of the vehicle. In GPL we have nodes jpl defining the state when the
vehicle arrives at client j on an arc in position p and leaves it with load l. Node
set VPL = {0, n + 1} ∪ {jpl : j ∈ Vc, p ∈ Pj , l ∈ Lj} consists of the start and
the end depot, and replicated nodes for all clients for all possible positions and
loads. Arc set APL includes

• start depot arcs {(0, j1l) : (0, j) ∈ A, l = l0j + ρj = u0j + ρj},

• general arcs {(ip−1,l, jp,l+ρj ) : (i, j) ∈ A, i 6= 0, j 6= n+ 1, p ∈ Pij , l ∈ Lij},
and

• end depot arcs {(jnl, n+ 1) : (j, n+ 1) ∈ A, l = lj,n+1 = uj,n+1}.

Note that due to the position dimension, the layered graph GPL is acyclic and
thus the generalized PQ system (35)–(37) is sufficient to eliminate subtours.

Similar to what has been suggested in the last subsection we can readapt
the SOP cuts (21) in layered graph GPL. Let SPL := {ipl ∈ VPL : i ∈ S} denote
the set of all copies of nodes in some set S ⊆ V . The corresponding SOP cuts
in GPL are defined as:

z(S, V ijPL \ S) ≥ 1 ∀S ⊂ V ijPL, {i}PL ⊆ S, {j}PL ⊆ V ijPL \ S, ∀(i, j) ∈ R̃ (38)

These inequalities can be interpreted as the SOP cuts (21) lifted by exploiting
position and load information at the same time. We can use an argument similar
to the one in the previous subsection to show that SOP cuts (38) dominate the
SOP cuts (34) in the load layered graph GL. We denote the generic model
extended by (35)–(37), and (38) by PLCUTR+, i.e., objective (1), degree
constraints (2)–(3), integrality constraints (6), the position-load-dependent PQ
system (35)–(37), and SOP cuts (38) in GPL. It is easy to argue that the LP
relaxation of PLCUTR+ is at least as good as the one of LCUTR+ and our
experimental tests indicate that it is significantly better provided that it can be
solved within the time limit. However, the relation between the LP bounds of
the models MCF and PLCUTR+ is still open.

Figure 2 summarizes the strength relations of the LP relaxations of all the
models proposed in the last two sections. We note that there is no LP rela-
tion between the bounds given by the models MCF and CUTR, LCUTR and
LCUTR+. This can be observed from the experimental tests, e.g., in Table 2.
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MCF TMCF

WTMCF CUTK

CUTR

LCUTR

LCUTR+

PLCUTR+

Figure 2: Strength relations: The model at the head of an arrow provides an optimal LP
relaxation value which is at least as good as the one of the model at the corresponding tail.
Dashed lines indicate that there is no LP relation between the two models.

5.4. Valid Inequalities

Finally, we also consider valid inequalities similar to the ones in Section 4.6
in the variable space defined by the layered graphs GL and GPL. Note that the
concept of predecessors and successors is more complicated in layered graphs
since in contrast to original graph G the solution path in GL or GPL is not
Hamiltonian. We know, however, that exactly one of the copies of each original
node has to be visited. Thus, in the context of layered graphs a precedence
relation (i, j) ∈ R means that one of the copies of node i has to be visited before
one of the copies of node j. However, we cannot say that one particular copy of
node i has to be before one particular copy of node j since one or both copies
may not be visited at all. Thus, the predecessors and successors of some subset
S ⊆ VL in GL need to be defined as πL(S) := {il ∈ VL : (i, j) ∈ R ∧ {j}L ⊆ S}
and σL(S) := {jl ∈ VL : (i, j) ∈ R ∧ {i}L ⊆ S}, respectively. The definitions in
GPL are similar.

As already shown above SOP inequalities (34) and (38) are lifted variants of
SOP inequalities (21) in the layered graph. In a similar way we lift the π-, σ-,
and (π, σ)-inequalities by Balas et al. (1995) to the space of variables zlij and

zplij , respectively. When a violated inequality (34) and (38) is found we try to lift
it to the transformed π-, σ-, and (π, σ)-inequality in GL and GPL, respectively,
similar to the liftings of (21) mentioned in Section 4.6: We may exclude further
cut arcs based on the found cut set while considering the different meaning of
predecessors and successors, as mentioned above.

Finally, we also lift inequalities (24) to the space of variables zlij . Let
(i1, i2), ..., (ik−1, ik) ∈ R, i1, ..., ik ∈ V \ {n + 1}, for odd values of k ≥ 3 be
a non-dominated sequence of precedence relations as defined in Subsection 4.6.
All copies of odd nodes in GL are fixed to some set S ⊂ VL\{n+1} and all copies
of even nodes to set VL \S, i.e.,

⋃
h≤k,h odd{ih}L ⊆ S and

⋃
h≤k,h even{ih}L ⊂

VL \ S. The set of excluded nodes is defined as S′ =
⋃

(j,i1)∈R∨(ik,j)∈R\R̃{j}L.
Then, we obtain inequalities

z(S \ S′, VL \ (S ∪ S′)) ≥ dk/2e. (39)

Similar to inequalities (24) this lifted variant can be separated in polynomial
time by computing the max-flow in a support graph G′′L = (V ′L \S′, A′L \ {(i, j) :
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i ∈ S′ ∨ j ∈ S′}) with V ′L = VL ∪ {s, t}, and A′ = AL ∪ {(s, ih) : h ≤ k, h odd} ∪
{(ih, t) : h ≤ k, h even}. The capacities on the arcs incident to node s and t are
set to 1. Then, the max-flow from s to t is equivalent to a minimum cut in GL

satisfying the requirements above.

6. Branch-and-Cut Algorithm

The proposed models are solved with a branch-and-cut algorithm based on
the framework IBM ILOG CPLEX 12.6. In this section we mention non-default
settings of CPLEX, details about the cutting plane algorithm, and methods
to obtain primal bounds. Both the cutting plane algorithm and the primal
heuristics are provided to CPLEX via callback functions. All settings have been
identified in preliminary tests with a diverse subset of the instances. We denote
by xLP the solution of the LP relaxation in some branch-and-bound node.

6.1. General Settings

We use default settings for CPLEX with the following exceptions: The solu-
tion emphasis is set to “optimality” and general-purpose heuristics are switched
off since primal bounds are provided by our own problem-specific heuristics. All
variables are declared to be integral since this turned out to be beneficial for the
presolving and branching phase of CPLEX, but branching on the x-variables is
prioritized.

6.2. Cutting Plane Algorithm

In each cutting plane iteration within a branch-and-bound node we search
for violated inequalities of all sets considered in a particular setting. However,
to appropriately deal with a possibly large number of added inequalities and
slow cutting plane convergence (cf. Uchoa, 2011), we apply the following rules:

• Suppose that a valid inequality in graph G has the form x(A′) ≥ b, then
we only add a violated cut if xLP(A′) < ∆G ·b with ∆G ∈ (0, 1]. Similarly,
we use parameters ∆GL and ∆GPL for valid inequalities in GL and GPL,
respectively.

• If the LP relaxation value does not increase in the last five cutting plane
iterations within a branch-and-bound node we continue with branching.

• We add at most 100 violated inequalities per considered set of inequalities
within one cutting plane iteration.

• After solving a maximum flow to search for violated cut sets we might
obtain multiple minimum cuts. In this case we only consider the minimum
cut with the smallest and the largest set S, and only add the cut inequality
for which the number of cut arcs is minimal.

Together with the exact separation algorithms described in the previous sections,
we apply in each cutting plane iteration the heuristic by Hernández-Pérez &
Salazar-González (2009) to identify further violated inequalities: Essentially,
we perform a restricted enumeration of node sets S and check for violated π-,
σ-, and (π, σ)-inequalities, and capacity cuts (30).
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Algorithm 1: Primal Heuristic

Input: graph G, LP solution xLP, global best solution Sg
Output: solution S for the m-PDTSP (empty if none can be found)
// Solution construction

1 N = 1, S = ∅
2 while (S is infeasible or duplicate) and N ≤ 10 do
3 S = {0} // sequence of nodes starting in depot 0

4 while |S| < |V | and S can be feasibly extended do
5 extend S by a node chosen randomly from the N cheapest feasible

successors (based on costs c′ij = cij(1− xLPij ),∀(i, j) ∈ A)

6 N = N + 1

7 if S is infeasible then return ∅
// Solution improvement

8 I = 0, Ns = 2
9 while I < 30 do

10 S′ = Sg (with P = 50%), else S
11 apply to S′ consecutively Ns random feasible node shifts
12 while S′ can be improved do
13 apply to S′ randomly one of the ten most improving moves out of

all feasible node shifts and node swaps

14 if c(S′) < c(S) then S = S′, I = 0, Ns = 2
15 else I = I + 1, Ns = min{Ns + 1, 10}
16 return S

6.3. Primal Heuristics

Since primal bounds are essential for pruning the branch-and-bound tree
and fixing variables based on reduced costs we also use heuristics in each of the
branch-and-bound nodes. These heuristics are called after each cut iteration
in the root node of the branch-and-bound tree, in every 5th branch-and-bound
node within the first 100 nodes, in every 25th node within the first 1000 nodes,
and in every 50th node in the rest of the nodes. In the remaining of this subsec-
tion we give a brief overview of the heuristics that we use (see also Algorithm 1).

To construct a feasible solution we apply a nearest neighbor heuristic (Rodŕıguez-
Mart́ın & Salazar-González, 2012) guided by the LP solution of the current
branch-and-bound node in the sense that we use modified arc costs c′ij =

cij(1 − xLPij ) for each (i, j) ∈ A: The solution path is extended step-by-step
by choosing the cheapest unvisited successor node without violating the vehicle
capacity and the precedence relations. We store all solutions in a hash-based
archive to prevent duplicates. If we are not able to construct a feasible solution
or if we obtain a duplicate we start again in a GRASP manner (Feo & Resende,
1995), i.e., we randomly choose among the N cheapest extension nodes, with N
being increased from 2 to 10 in case of infeasibility. If after ten tries we obtain
no feasible solution we continue with the branch-and-cut algorithm.

To further improve a created solution, we run a generalized variable neigh-
borhood search (GVNS) (Hansen & Mladenović, 2001). We stop the GVNS if
after 30 iterations no new global best solution can be found. With a probability
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of 50% we choose the global best solution for a GVNS iteration, otherwise we use
the best solution in the current heuristic call. To locally improve the solution
an embedded variable neighborhood descent (VND) based on two neighborhood
structures is applied: i) One node is shifted to another position in the path, and
ii) two nodes are swapped. In each iteration in the VND we choose randomly
among the ten most improving feasible moves from both neighborhoods. To
diversify the solution in the shaking phase of the GVNS we apply two random
node shifts. If after a GVNS iteration no new global best solution can be found
the number of shaking moves is increased by one (up to at most 10).

7. Experiments

This section reports and discusses experimental results for instances of the
m-PDTSP and the SOP. Each test run was performed on a single core of an
Intel Xeon E5540 or E5649 machine both with 2.53 GHz. Preliminary tests
showed that both machines have nearly the same performance with respect to
our type of experiments. The memory limit per test run was set to 8 GB. The
CPU times for the preprocessing from Section 2 is included in all given running
times.

7.1. Results for the m-PDTSP

The maximum CPU time to obtain the optimal solutions for the integer
models and the respective LP relaxations of the m-PDTSP was set to 7200
seconds. We used three different classes of instances introduced by Hernández-
Pérez & Salazar-González (2009): Class 1 has been derived from instances for
the SOP, each precedence relation corresponding to a commodity with demand 1
(Suffix “max1”) or with a randomly chosen demand in {1, ..., 5} (Suffix “max5”).
Class 2 and 3 have n points randomly placed in a square with costs corresponding
to the Euclidian distances and different numbers of commodities with randomly
chosen origin, destination, and demand in {1, ..., 5}. The difference between the
last two classes is that in class 3 each node is the origin or destination of exactly
one commodity whereas in class 2 this restriction does not hold. Class 1 are
single instances whereas the other two classes contain sets of ten instances with
the same general properties (number of nodes, number of commodities, vehicle
capacity). We only considered instances from these sets which are not shown
to be unconstrained or infeasible in the preprocessing phase with respect to the
associated vehicle capacity.

Tables 2 and 3 compare the LP relaxations of the different models shown in
Fig. 2. Additionally, we enhance model CUTR by considering all valid inequal-
ities described in Section 4.6, and denote it by CUTR∗. Similarly, we denote
model LCUTR+ with all valid inequalities in Section 4.6 and 5.4 by LCUTR∗+,
and PLCUTR+ with the same inequalities formulated in graph GPL instead of
GL by PLCUTR∗+. For the last three models (with suffix ∗) we also perform
heuristic separation as described in Section 6.2. Because of this and the heuristic
liftings the LP relations to the models with exact deterministic separation are
not consistent. Similarly, the Benders decomposition approach (BE) based on
the MCF model by Hernández-Pérez & Salazar-González (2009) (HS) also con-
tains heuristic elements. We adopted all results of BE from Hernández-Pérez &
Salazar-González (2009). In the cutting plane algorithm for computing the LP
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Table 2: Comparison of LP relaxations of different models for class 1 instances. Bold values
denote the best LP gaps.

LP gap in % LP time in seconds
HS CUT- LCUT- PLCUT- HS CUT- LCUT- PLCUT-

Instance |V | |K| Q BE MCF K R R∗ R R+ R∗+ R+ R∗+ BE MCF K R R∗ R R+ R∗+ R+ R∗+
ESC07Q3max1 9 6 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
ESC07Q10max5 9 6 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
ESC12Q4max1 14 7 4 17.8 17.8 18.4 18.4 18.4 14.4 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 1 1
ESC12Q5max1 14 7 5 13.8 13.9 14.0 13.9 13.9 12.5 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 1 1
ESC12Q15max5 14 7 15 13.8 14.0 14.0 13.9 13.9 12.5 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 2 2
ESC25Q3max1 27 9 3 12.2 10.1 12.5 11.6 9.4 11.2 7.0 6.9 5.1 5.1 0 1 0 0 0 0 1 1 tl tl
ESC25Q4max1 27 9 4 9.0 14.7 15.6 13.5 9.6 10.3 7.4 6.9 5.0 5.0 0 1 0 0 0 0 2 2 tl tl
ESC25Q5max1 27 9 5 0.6 4.1 4.1 2.3 0.0 2.3 0.0 0.0 0.0 0.0 0 0 0 0 0 1 1 1 146 139
ESC25Q15max5 27 9 15 1.2 4.1 4.1 2.3 1.2 2.1 0.0 0.0 0.0 0.0 0 0 0 0 0 2 2 3 931 922
ESC25Q20max5 27 9 20 2.1 4.1 4.1 2.3 1.0 2.1 0.0 0.0 0.0 0.0 0 0 0 0 0 4 4 5 1582 1585
ESC47Q3max1 49 10 3 7.6 6.6 7.0 7.0 6.4 7.0 5.0 4.9 6.9 6.8 0 10 2 1 1 2 7 11 tl tl
ESC47Q4max1 49 10 4 4.0 3.2 3.2 3.2 2.6 3.2 1.8 1.7 5.0 3.0 0 8 2 1 2 4 15 27 tl tl
ESC47Q10max5 49 10 10 7.6 7.0 7.0 7.0 6.4 7.0 4.3 4.3 100.0 100.0 0 8 2 1 2 9 179 173 tl tl
ESC47Q15max5 49 10 15 4.0 3.2 3.2 3.2 2.6 3.2 1.6 1.6 100.0 100.0 0 8 1 1 1 14 261 238 tl tl
ESC47Q20max5 49 10 20 4.0 3.2 3.2 3.2 2.6 3.2 1.6 1.6 100.0 100.0 0 8 1 1 2 17 346 260 tl tl
br17.10Q3max1 18 10 3 24.0 20.7 32.9 31.7 23.2 31.7 25.6 18.3 2.4 2.4 0 1 0 0 0 0 0 2 tl tl
br17.10Q4max1 18 10 4 24.7 32.9 41.1 39.7 24.7 37.0 30.1 21.9 17.8 17.8 0 1 0 0 0 0 2 2 tl tl
br17.10Q5max1 18 10 5 0.0 20.0 25.5 21.8 0.0 21.8 14.5 0.0 3.6 0.0 0 1 0 0 0 0 8 0 tl 57
br17.10Q10max5 18 10 10 16.1 22.7 34.8 30.3 16.7 28.8 12.1 7.6 7.6 6.1 0 1 0 0 0 0 28 75 tl tl
br17.10Q15max5 18 10 15 0.0 23.6 25.5 21.8 0.0 21.8 7.3 0.0 5.5 0.0 0 0 0 0 0 1 1082 1 tl 93
br17.12Q3max1 18 12 3 47.6 42.9 53.8 52.9 44.5 52.1 42.9 37.0 0.0 0.0 0 0 0 0 0 0 0 0 3196 3952
br17.12Q4max1 18 12 4 25.7 33.8 43.2 40.5 25.7 36.5 24.3 18.9 13.5 13.5 0 1 0 0 0 0 2 3 tl tl
br17.12Q5max1 18 12 5 0.0 20.0 25.5 21.8 0.0 21.8 12.7 0.0 0.0 0.0 0 1 0 0 0 0 1 0 tl 18
br17.12Q10max5 18 12 10 25.7 33.8 40.5 36.5 25.7 35.1 13.5 12.2 1.4 1.4 0 1 0 0 0 0 50 60 tl tl
br17.12Q15max5 18 12 15 9.1 25.5 25.5 21.8 9.1 21.8 5.5 1.8 3.6 3.6 0 0 0 0 0 1 1264 4741 tl tl
p43.1Q2max1 44 9 2 - - - - - - - - - - - 37 2 2 2 4 220 751 tl tl
p43.1Q3max1 44 9 3 - - - - - - - - - - - 40 2 2 2 3 1754 1218 tl tl
p43.1Q4max1 44 9 4 - - - - - - - - - - - 60 2 1 3 8 1544 2286 tl tl
p43.1Q10max5 44 9 10 - - - - - - - - - - - 62 1 2 2 12 tl tl tl tl
p43.1Q15max5 44 9 15 - - - - - - - - - - - 29 1 2 3 55 tl tl tl tl
p43.2Q10max1 44 20 10 - - - - - - - - - - - 1154 3 3 4 64 tl tl tl tl
p43.2Q40max5 44 20 40 - - - - - - - - - - - 223 2 2 4 964 tl tl tl tl
p43.3Q10max1 44 37 10 - - - - - - - - - - - 2837 4 7 8 63 tl tl tl tl
p43.3Q40max5 44 37 40 - - - - - - - - - - - 1006 3 5 8 1750 tl tl tl tl
p43.4Q10max1 44 50 10 - - - - - - - - - - - 34 1 1 3 15 tl tl tl tl
p43.4Q40max5 44 50 40 - 21.5 21.5 16.2 0.1 16.2 16.2 0.1 100.0 100.0 - 17 1 1 2 265 tl 4296 tl tl

relaxation we set ∆G = ∆GL
= ∆GPL

= 1 and do not perform early branching to
obtain the correct LP relaxation value. Let cOPT be the optimal integer solution
value and cLP be the optimal value of the LP relaxation. The LP gap value for
one particular model and instance in the tables is given by (cOPT − cLP)/cOPT.
If value cOPT or cLP is not available we skip the corresponding LP gap value
(“-” in the tables). The CPU times do not involve instances which are deter-
mined to be infeasible after solving the LP relaxation. If all instances of a set
are infeasible we write “inf” in the tables. If the time limit is reached before
the cutting plane algorithm was finished we write “tl” in the tables or use 7200
seconds to compute the average values.

By aggregating the commodities in model CUTK we lose some information
about the demand structure which can be observed in the weaker gaps with
respect to model MCF. However, by adding further valid inequalities in CUTR
and CUTR∗ this disadvantage can be alleviated for most of the instances, except
for those with very tight vehicle capacities. It can be clearly seen that the layered
graph models obtain significantly smaller LP gaps than the other models defined
on the original graph. However, for several instances it was not possible to
compute the optimal LP relaxation value within the time limit, especially for
large models on the 3-dimensional layered graph. Note that we observed that
for some instances infeasibility can be shown in the LP relaxation only with the
strong models.

Tables 4 and 5 show the results of our branch-and-cut algorithms in com-
parison to the Benders decomposition approach (BE) by Hernández-Pérez &
Salazar-González (2009). Here, we only consider a subset of our models, namely
CUTR∗ (C), LCUTR∗+ (L), and PLCUTR∗+ (PL). In the embedded cutting
plane algorithms we set ∆G = 0.75,∆GL

= ∆GPL
= 0.25. Let cLB and cUB be
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Table 3: Comparison of LP relaxations of different models for class 2 and 3 instances. Bold
values denote the best LP gaps. Each set contains 10 instances.

avg. LP gap in % avg. LP time in seconds
HS CUT- LCUT- PLCUT- HS CUT- LCUT- PLCUT-

Set |V | |K| Q BE MCF K R R∗ R R+ R∗+ R+ R∗+ BE MCF K R R∗ R R+ R∗+ R+ R∗+
n10m5Q10 11 5 10 1.7 1.7 1.9 1.6 0.5 0.6 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n10m5Q15 11 5 15 1.2 0.6 0.6 0.5 0.0 0.2 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n10m5Q20 11 5 20 - 0.6 0.6 0.5 0.0 0.2 0.0 0.0 0.0 0.0 - 0 0 0 0 0 0 0 0 0
n10m10Q10 11 10 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n10m10Q15 11 10 15 3.5 0.4 1.6 1.6 1.5 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n10m10Q20 11 10 20 1.0 1.2 1.4 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n10m10Q25 11 10 25 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0 0 0 0 0 0 0 0 0
n10m10Q30 11 10 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0 0 0 0 0 0 0 0 0
n10m15Q10 11 15 10 - - - - - - - - - - - inf inf inf inf inf inf inf inf inf
n10m15Q15 11 15 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n10m15Q20 11 15 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n10m15Q25 11 15 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n10m15Q30 11 15 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
n15m5Q10 16 5 10 4.7 7.6 8.3 5.1 3.1 4.3 1.3 1.1 0.0 0.0 0 0 0 0 0 0 4 4 782 688
n15m5Q15 16 5 15 4.0 6.3 6.3 3.2 1.9 2.8 0.6 0.5 0.1 0.1 0 0 0 0 0 0 15 35 735 732
n15m5Q20 16 5 20 - 6.3 6.3 3.2 1.9 2.8 0.6 0.5 0.1 0.1 - 0 0 0 0 0 22 46 739 734
n15m10Q10 16 10 10 9.3 9.6 14.7 10.4 6.6 9.6 3.6 2.7 0.0 0.0 0 0 0 0 0 0 5 8 549 670
n15m10Q15 16 10 15 6.1 5.9 7.1 4.8 2.7 4.2 0.1 0.0 0.0 0.0 0 0 0 0 0 0 41 39 44 46
n15m10Q20 16 10 20 5.6 5.6 6.2 3.5 1.8 2.8 0.1 0.0 0.0 0.0 0 0 0 0 0 0 97 146 83 72
n15m10Q25 16 10 25 4.8 5.3 5.4 2.4 1.2 2.3 0.1 0.0 0.0 0.0 0 0 0 0 0 1 230 144 115 111
n15m10Q30 16 10 30 - 5.3 5.3 2.3 1.2 2.2 0.1 0.0 0.0 0.0 - 0 0 0 0 1 251 202 142 103
n15m15Q10 16 15 10 - - - - - - - - - - - 0 0 0 0 0 inf inf inf inf
n15m15Q15 16 15 15 13.4 11.1 12.6 11.6 9.8 9.9 0.1 0.0 0.0 0.0 0 0 0 0 0 0 1 5 4 4
n15m15Q20 16 15 20 4.3 2.3 3.8 3.3 1.2 1.8 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 4 4
n15m15Q25 16 15 25 1.7 0.1 0.4 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 4 4
n15m15Q30 16 15 30 1.7 0.1 0.4 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 5 4
n20m5Q10 21 5 10 2.6 5.3 5.7 4.0 1.9 3.1 0.2 0.2 0.0 0.0 0 0 0 0 0 0 1 1 207 117
n20m5Q15 21 5 15 2.0 3.5 3.5 1.3 0.4 1.2 0.0 0.0 0.0 0.0 0 0 0 0 0 1 1 1 219 126
n20m5Q20 21 5 20 - 3.5 3.5 1.3 0.4 1.2 0.0 0.0 0.0 0.0 - 0 0 0 0 1 1 1 247 130
n20m10Q10 21 10 10 6.4 9.3 14.1 10.0 5.8 8.6 2.9 2.0 3.8 2.4 0 1 0 0 0 0 127 119 5453 4926
n20m10Q15 21 10 15 7.0 11.0 13.0 8.7 5.9 7.9 3.2 2.5 3.8 2.7 0 1 0 0 0 1 1000 948 5102 4431
n20m10Q20 21 10 20 3.7 8.6 8.8 4.3 1.8 4.2 1.3 0.6 1.7 1.0 0 0 0 0 0 2 1672 1672 2707 2440
n20m10Q25 21 10 25 3.4 8.1 8.1 3.5 1.5 3.5 1.1 0.5 1.5 0.8 0 0 0 0 0 3 1511 1274 2822 1988
n20m10Q30 21 10 30 - 8.1 8.1 3.5 1.5 3.5 1.1 0.5 1.5 0.8 - 0 0 0 0 3 1555 1475 2881 2103
n20m15Q10 21 15 10 - - - - - - - - - - - 2 0 0 0 0 25 60 tl tl
n20m15Q15 21 15 15 13.4 17.1 20.5 17.9 13.6 16.3 6.8 5.5 6.4 5.2 0 2 0 0 0 1 1195 1248 tl tl
n20m15Q20 21 15 20 11.3 15.2 17.0 13.8 8.5 13.3 3.9 2.7 6.1 4.2 0 1 0 0 0 2 4886 4677 6585 6430
n20m15Q25 21 15 25 12.2 11.5 12.2 8.9 4.5 8.6 2.6 1.7 4.2 2.5 0 1 0 0 0 3 4334 3259 5096 4519
n20m15Q30 21 15 30 11.2 10.6 11.1 7.7 3.3 7.4 2.2 1.1 3.6 1.7 0 1 0 0 0 5 4381 3499 5767 4333
n25m5Q10 26 5 10 3.6 6.7 7.2 5.4 3.7 4.6 1.6 1.3 2.1 1.8 0 1 0 0 0 1 35 37 4605 3519
n25m5Q15 26 5 15 3.5 4.7 4.8 3.0 2.1 2.8 0.7 0.6 1.1 0.9 0 0 0 0 0 3 120 167 4339 4269
n25m5Q20 26 5 20 3.2 4.5 4.5 2.7 1.9 2.6 0.7 0.6 1.1 0.9 0 0 0 0 0 3 211 234 4172 4077
n25m10Q10 26 10 10 10.0 11.9 17.7 14.5 10.2 13.7 7.6 5.6 10.3 7.6 0 3 0 0 0 1 218 171 tl tl
n25m10Q15 26 10 15 9.1 12.5 14.0 10.9 7.6 10.6 4.7 3.3 8.4 6.0 0 1 0 0 0 3 2849 2656 tl tl
n25m10Q20 26 10 20 7.5 10.9 11.2 7.9 5.0 7.7 3.2 1.7 6.8 4.5 0 1 0 0 0 5 5682 5109 6801 6707
n25m10Q25 26 10 25 7.2 10.5 10.5 7.3 4.5 7.2 3.3 1.8 6.7 4.7 0 1 0 0 0 8 6480 5107 6651 6736
n25m10Q30 26 10 30 - 10.5 10.5 7.3 4.5 7.2 3.5 1.8 7.1 4.9 - 1 0 0 0 9 6480 5287 6686 6698
n25m15Q10 26 15 10 - - - - - - - - - - - 5 0 0 0 1 115 153 tl tl
n25m15Q15 26 15 15 7.7 15.3 20.3 17.5 10.5 16.7 8.2 6.0 13.2 9.0 0 5 0 0 0 2 4071 4540 tl tl
n25m15Q20 26 15 20 9.6 15.2 16.8 13.2 7.6 13.1 6.8 4.5 11.5 7.1 0 3 0 0 0 7 6340 5781 tl tl
n25m15Q25 26 15 25 10.5 14.1 14.5 10.9 5.4 10.7 6.1 3.0 10.6 6.2 0 2 0 0 0 11 6665 5853 tl tl
n25m15Q30 26 15 30 10.6 13.7 13.8 10.0 4.6 9.9 6.4 3.0 11.2 9.2 0 1 0 0 0 19 6802 6102 tl tl

m5Q5 12 5 5 0.7 1.4 2.2 1.6 1.4 1.0 0.6 0.5 0.0 0.0 0 0 0 0 0 0 0 0 0 0
m5Q10 12 5 10 2.1 2.4 3.0 2.3 0.8 1.4 0.1 0.1 0.0 0.0 0 0 0 0 0 0 0 0 0 0
m5Q15 12 5 15 1.6 1.6 1.6 0.9 0.6 0.8 0.1 0.1 0.0 0.0 0 0 0 0 0 0 0 0 1 0
m10Q5 22 10 5 4.6 2.4 10.4 9.7 7.3 7.3 4.5 3.4 0.9 0.4 0 0 0 0 0 0 0 0 1941 2262
m10Q10 22 10 10 8.8 9.9 17.9 16.7 12.7 15.3 10.6 8.5 9.6 7.7 0 2 0 0 0 0 26 28 tl tl
m10Q15 22 10 15 8.6 10.5 12.3 10.4 8.8 10.1 6.8 6.2 7.1 6.5 0 1 0 0 0 1 359 398 5802 5796
m10Q20 22 10 20 6.2 8.7 8.9 6.8 5.4 6.6 3.5 2.9 4.3 3.8 0 1 0 0 0 2 2290 2865 5863 5861
m10Q25 22 10 25 5.7 8.4 8.5 6.4 4.8 6.1 3.1 2.6 4.0 3.6 0 0 0 0 0 4 5450 5258 5942 5927
m10Q30 22 10 30 5.8 8.2 8.2 6.1 4.5 5.9 2.9 2.4 3.8 3.4 0 0 0 0 0 5 5460 5254 6063 6357
m15Q5 32 15 5 7.4 2.9 14.8 14.4 10.5 11.9 8.6 6.5 8.5 6.5 1 6 0 0 0 0 1 1 tl tl
m15Q10 32 15 10 9.2 10.5 20.6 18.7 10.8 16.7 12.8 8.1 15.1 9.7 0 23 0 0 1 1 76 81 tl tl
m15Q15 32 15 15 9.2 11.8 15.4 13.4 10.2 12.8 9.7 8.2 11.9 10.8 0 13 0 0 0 3 1255 1414 tl tl
m15Q20 32 15 20 10.4 13.2 14.7 12.9 10.5 12.4 9.2 8.3 18.6 22.1 0 7 0 0 0 8 6903 tl tl tl
m15Q25 32 15 25 9.1 11.7 12.1 10.2 8.3 9.8 7.2 6.6 68.0 62.8 0 4 0 0 0 15 6843 6536 tl tl
m15Q30 32 15 30 8.9 11.9 11.9 10.0 8.2 9.6 7.9 7.3 92.7 100.0 0 4 0 0 0 21 6690 6484 tl tl
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Table 4: Comparison of branch-and-cut algorithms based on different models for class 1
instances (C ... CUTR∗, L ... LCUTR∗

+, PL ... PLCUTR∗
+). Bold values denote the best

CPU times.
removed gap in % time in sec. infeasible time limit

Instance |V | |K| Q arcs in % C L PL BE C L PL BE C L PL BE C L PL

ESC07Q3max1 9 6 3 18 0.0 0.0 3.5 0 0 0 0 0 0 0 0 0 0 0 0
ESC07Q10max5 9 6 10 18 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0
ESC12Q4max1 14 7 4 11 0.0 0.0 0.0 0 0 0 3 0 0 0 0 0 0 0 0
ESC12Q5max1 14 7 5 10 0.0 0.0 0.0 0 1 0 1 0 0 0 0 0 0 0 0
ESC12Q15max5 14 7 15 10 0.0 0.0 0.0 0 1 0 2 0 0 0 0 0 0 0 0
ESC25Q3max1 27 9 3 4 0.0 0.0 0.0 43 13 10 1291 0 0 0 0 0 0 0 0
ESC25Q4max1 27 9 4 3 0.0 0.0 0.0 5 7 10 1063 0 0 0 0 0 0 0 0
ESC25Q5max1 27 9 5 3 0.0 0.0 0.0 0 1 2 104 0 0 0 0 0 0 0 0
ESC25Q15max5 27 9 15 3 0.0 0.0 0.0 0 1 2 886 0 0 0 0 0 0 0 0
ESC25Q20max5 27 9 20 3 0.0 0.0 0.0 0 1 6 1497 0 0 0 0 0 0 0 0
ESC47Q3max1 49 10 3 2 0.0 0.0 47.1 61 40 175 tl 0 0 0 0 0 0 0 1
ESC47Q4max1 49 10 4 2 0.0 0.0 56.4 12 12 22 tl 0 0 0 0 0 0 0 1
ESC47Q10max5 49 10 10 2 0.0 0.0 - 61 83 1706 tl 0 0 0 0 0 0 0 1
ESC47Q15max5 49 10 15 2 0.0 0.0 - 10 12 403 tl 0 0 0 0 0 0 0 1
ESC47Q20max5 49 10 20 2 0.0 0.0 - 10 17 311 tl 0 0 0 0 0 0 0 1
br17.10Q3max1 18 10 3 16 0.0 0.0 0.0 28 7 4 126 0 0 0 0 0 0 0 0
br17.10Q4max1 18 10 4 11 0.0 0.0 0.0 6868 2284 279 6355 0 0 0 0 0 0 0 0
br17.10Q5max1 18 10 5 8 0.0 0.0 0.0 0 0 0 13 0 0 0 0 0 0 0 0
br17.10Q10max5 18 10 10 14 0.0 0.0 0.0 73 25 23 802 0 0 0 0 0 0 0 0
br17.10Q15max5 18 10 15 8 0.0 0.0 0.0 0 0 1 40 0 0 0 0 0 0 0 0
br17.12Q3max1 18 12 3 23 0.0 0.0 0.0 1820 57 18 515 0 0 0 0 0 0 0 0
br17.12Q4max1 18 12 4 14 0.0 0.0 0.0 3049 888 27 5265 0 0 0 0 0 0 0 0
br17.12Q5max1 18 12 5 11 0.0 0.0 0.0 0 0 0 5 0 0 0 0 0 0 0 0
br17.12Q10max5 18 12 10 19 0.0 0.0 0.0 2040 191 58 1735 0 0 0 0 0 0 0 0
br17.12Q15max5 18 12 15 11 0.0 0.0 0.0 1 1 5 186 0 0 0 0 0 0 0 0
p43.1Q2max1 44 9 2 3 48.7 48.7 49.0 - tl tl tl - 0 0 0 - 1 1 1
p43.1Q3max1 44 9 3 1 0.4 0.4 1.5 - tl tl tl - 0 0 0 - 1 1 1
p43.1Q4max1 44 9 4 1 0.0 0.1 48.9 - tl tl tl - 0 0 0 - 1 1 1
p43.1Q10max5 44 9 10 1 0.0 0.3 - - tl tl tl - 0 0 0 - 1 1 1
p43.1Q15max5 44 9 15 1 0.1 0.2 - - tl tl tl - 0 0 0 - 1 1 1
p43.2Q10max1 44 20 10 3 0.4 0.6 - - tl tl tl - 0 0 0 - 1 1 1
p43.2Q40max5 44 20 40 3 0.4 0.6 - - tl tl tl - 0 0 0 - 1 1 1
p43.3Q10max1 44 37 10 6 1.2 1.7 - - tl tl tl - 0 0 0 - 1 1 1
p43.3Q40max5 44 37 40 6 0.4 0.7 - - tl tl tl - 0 0 0 - 1 1 1
p43.4Q10max1 44 50 10 39 0.1 0.3 - - tl tl tl - 0 0 0 - 1 1 1
p43.4Q40max5 44 50 40 39 0.0 0.0 - - 12 tl tl - 0 0 0 - 0 1 1

the best global lower and upper bounds, respectively, obtained by the algorithm
within the time limit. The gaps in the tables are given by (cUB − cLB)/cUB. If
at least one of the bounds is not available we skip the corresponding gap value
(“-” in the tables). Note that these gaps are not available for the BE approach.
Again, the CPU times do not involve instances which are shown to be infeasible
in the solution process. If the time limit is reached before proving optimality
we write “tl” in the tables or use 7200 seconds to compute the average values.
Additionally, the tables include the number of instances which are shown to be
infeasible and the number of instances for which the algorithm reaches the time
limit. Note that the CPU times of BE have been obtained on a different hard-
ware with CPLEX 10.2. The column “removed arcs in %” shows the average
percentage of arcs which are eliminated in the preprocessing phase described in
Section 2.

For class 2 and 3 instances with a large number of commodities the demand
aggregation discussed in Section 4 (model CUTR∗) is quite beneficial in terms
of lower CPU times when compared to the BE approach. Additionally, we are
able to solve several open m-PDTSP instances. The branch-and-cut algorithm
based on LCUTR∗+ shows significant improvements on instances with extremely
tight vehicle capacities (cf. br17.10, br17.12 in Table 4). However, both layered
graph variants are not competitive on larger instances because of the large size
of the corresponding models.

7.2. Results for the SOP

As mentioned before, relaxing the capacity constraints in the m-PDTSP
leads to the SOP. Therefore, we also provide branch-and-cut results on bench-
mark instances for the SOP. The CPU time limit is extended to 1 day. We re-
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Table 5: Comparison of branch-and-cut algorithms based on different models for class 2 and
3 instances (C ... CUTR∗, L ... LCUTR∗

+, PL ... PLCUTR∗
+). Bold values denote the best

CPU times. Each set contains 10 instances.
removed avg. gap in % avg. time in sec. # infeasible # time limit

Set |V | |K| Q arcs in % C L PL BE C L PL BE C L PL BE C L PL

n10m5Q10 11 5 10 23 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0
n10m5Q15 11 5 15 21 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0
n10m5Q20 11 5 20 21 0.0 0.0 0.0 - 0 0 0 - 0 0 0 - 0 0 0
n10m10Q10 11 10 10 89 0.0 0.0 0.0 0 0 0 0 6 7 7 7 0 0 0 0
n10m10Q15 11 10 15 57 0.0 0.0 0.0 0 0 0 0 1 1 1 1 0 0 0 0
n10m10Q20 11 10 20 51 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0
n10m10Q25 11 10 25 51 0.0 0.0 0.0 - 0 0 0 - 0 0 0 - 0 0 0
n10m10Q30 11 10 30 51 0.0 0.0 0.0 - 0 0 0 - 0 0 0 - 0 0 0
n10m15Q10 11 15 10 100 - - - - - - - - 10 10 10 - 0 0 0
n10m15Q15 11 15 15 99 0.0 0.0 0.0 0 0 0 0 9 9 9 9 0 0 0 0
n10m15Q20 11 15 20 92 0.0 0.0 0.0 0 0 0 0 6 6 6 6 0 0 0 0
n10m15Q25 11 15 25 85 0.0 0.0 0.0 0 0 0 0 4 4 4 4 0 0 0 0
n10m15Q30 11 15 30 77 0.0 0.0 0.0 0 0 0 0 2 2 2 2 0 0 0 0
n15m5Q10 16 5 10 9 0.0 0.0 0.0 0 1 4 70 0 0 0 0 0 0 0 0
n15m5Q15 16 5 15 8 0.0 0.0 0.0 0 1 16 144 0 0 0 0 0 0 0 0
n15m5Q20 16 5 20 8 0.0 0.0 0.0 - 1 11 246 - 0 0 0 - 0 0 0
n15m10Q10 16 10 10 35 0.0 0.0 0.0 1801 1 4 74 6 7 7 7 1 0 0 0
n15m10Q15 16 10 15 23 0.0 0.0 0.0 0 1 3 36 1 1 1 1 0 0 0 0
n15m10Q20 16 10 20 20 0.0 8.0 0.0 0 0 6 48 0 0 0 0 0 0 0 0
n15m10Q25 16 10 25 20 0.0 0.0 0.0 0 0 7 74 0 0 0 0 0 0 0 0
n15m10Q30 16 10 30 20 0.0 0.0 0.0 0 0 7 67 - 0 0 0 - 0 0 0
n15m15Q10 16 15 10 64 - - - - - - - - 10 10 10 - 0 0 0
n15m15Q15 16 15 15 47 0.0 0.0 0.0 2 1 3 21 4 4 4 4 0 0 0 0
n15m15Q20 16 15 20 39 0.0 0.0 0.0 1 0 0 4 2 2 2 2 0 0 0 0
n15m15Q25 16 15 25 37 0.0 0.0 0.0 0 0 0 5 0 0 0 0 0 0 0 0
n15m15Q30 16 15 30 37 0.0 0.0 0.0 0 0 0 6 0 0 0 0 0 0 0 0
n20m5Q10 21 5 10 5 0.0 0.0 0.0 3 1 2 120 0 0 0 0 0 0 0 0
n20m5Q15 21 5 15 4 0.0 0.0 0.0 0 0 1 167 0 0 0 0 0 0 0 0
n20m5Q20 21 5 20 4 0.0 0.0 0.0 - 0 2 167 - 0 0 0 - 0 0 0
n20m10Q10 21 10 10 15 13.0 13.3 14.8 1832 1806 1854 3475 2 2 2 2 2 2 2 3
n20m10Q15 21 10 15 10 0.0 0.0 2.2 67 31 374 3138 0 0 0 0 0 0 0 3
n20m10Q20 21 10 20 9 0.0 0.0 0.8 53 1 156 1853 0 0 0 0 0 0 0 2
n20m10Q25 21 10 25 9 0.0 0.0 0.8 53 1 231 1770 0 0 0 0 0 0 0 2
n20m10Q30 21 10 30 9 0.0 0.0 0.9 - 1 212 1835 - 0 0 0 - 0 0 2
n20m15Q10 21 15 10 42 - - - - tl tl tl - 8 8 8 - 2 2 2
n20m15Q15 21 15 15 23 22.3 23.4 28.6 5305 3399 3684 6304 0 0 0 0 7 4 5 8
n20m15Q20 21 15 20 19 0.6 2.1 5.5 3073 910 2239 4864 0 0 0 0 4 1 3 6
n20m15Q25 21 15 25 18 0.0 0.0 3.2 172 6 532 3397 0 0 0 0 0 0 0 4
n20m15Q30 21 15 30 18 0.0 0.0 0.9 114 2 278 2555 0 0 0 0 0 0 0 2
n25m5Q10 26 5 10 3 0.0 0.0 11.3 2 10 25 2784 0 0 0 0 0 0 0 3
n25m5Q15 26 5 15 3 0.0 0.0 8.2 1 2 39 2271 0 0 0 0 0 0 0 1
n25m5Q20 26 5 20 3 0.0 0.0 0.7 1 2 44 2382 0 0 0 0 0 0 0 1
n25m10Q10 26 10 10 8 0.9 1.3 9.6 3684 2004 3916 6545 1 1 1 1 3 2 4 8
n25m10Q15 26 10 15 6 0.0 0.0 6.3 137 67 1577 tl 0 0 0 0 0 0 0 10
n25m10Q20 26 10 20 6 0.0 0.4 4.1 14 5 1980 6631 0 0 0 0 0 0 2 9
n25m10Q25 26 10 25 6 0.0 0.5 4.6 14 4 2367 6466 0 0 0 0 0 0 3 8
n25m10Q30 26 10 30 6 0.0 0.4 4.1 - 4 2146 6697 - 0 0 0 - 0 1 8
n25m15Q10 26 15 10 24 61.5 61.9 67.9 - tl tl tl - 3 3 3 - 7 7 7
n25m15Q15 26 15 15 13 4.5 7.3 16.4 5786 3167 5333 tl 0 0 0 0 8 4 7 10
n25m15Q20 26 15 20 10 0.7 3.8 9.2 3804 1385 4787 6520 0 0 0 0 5 1 6 8
n25m15Q25 26 15 25 10 0.0 1.5 6.1 1387 59 3545 6864 0 0 0 0 1 0 3 9
n25m15Q30 26 15 30 10 0.0 1.8 6.5 565 14 3388 tl 0 0 0 0 0 0 4 10

m5Q5 12 5 5 43 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0
m5Q10 12 5 10 14 0.0 0.0 0.0 0 0 0 1 0 0 0 0 0 0 0 0
m5Q15 12 5 15 14 0.0 0.0 0.0 0 0 0 1 0 0 0 0 0 0 0 0
m10Q5 22 10 5 48 0.0 0.0 0.0 2 2 1 93 0 0 0 0 0 0 0 0
m10Q10 22 10 10 7 0.0 0.0 4.6 87 165 612 5670 0 0 0 0 0 0 0 7
m10Q15 22 10 15 7 0.0 0.2 5.2 62 30 1741 5122 0 0 0 0 0 0 2 7
m10Q20 22 10 20 7 0.0 0.0 2.6 2 2 328 4128 0 0 0 0 0 0 0 5
m10Q25 22 10 25 7 0.0 0.1 2.3 1 2 1099 4086 0 0 0 0 0 0 1 4
m10Q30 22 10 30 7 0.0 0.1 2.1 1 2 1294 4379 0 0 0 0 0 0 1 4
m15Q5 32 15 5 43 1.1 1.1 12.0 2006 2529 1053 5922 0 0 0 0 2 1 1 8
m15Q10 32 15 10 5 6.2 9.1 18.9 6523 6493 6908 tl 0 0 0 0 9 9 9 10
m15Q15 32 15 15 5 2.4 7.5 15.1 4124 3284 6595 tl 0 0 0 0 5 4 9 10
m15Q20 32 15 20 5 0.0 5.6 43.5 918 269 7033 tl 0 0 0 0 0 0 9 10
m15Q25 32 15 25 5 0.0 4.4 92.3 118 40 5971 tl 0 0 0 0 0 0 8 10
m15Q30 32 15 30 5 0.0 6.0 - 101 43 6482 tl 0 0 0 0 0 0 9 10
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Table 6: Comparison of branch-and-cut algorithms for SOP instances from the TSPLIB. Bold
instance names mark instances solved for the first time. Bold bounds and CPU times denote
the best results.

LB UB time in seconds

Instance |V | |A| |R̃| BK BCx BK BCx BK BC1 BC2 BC3 BC4

ESC07 9 40 6 2125 2125 2125 2125 0 0 0 0 0
ESC12 14 132 7 1675 1675 1675 1675 0 0 0 0 0
ESC25 27 622 9 1681 1681 1681 1681 1 0 0 0 0
ESC47 49 2187 10 1288 1288 1288 1288 28 7 8 4 2
ESC63 65 3613 95 62 62 62 62 0 9 2 1 1
ESC78 80 5550 77 18230 18230 18230 18230 1 770 46 8664 7569
br17.10 18 237 10 55 55 55 55 0 1 0 1 0
br17.12 18 223 12 55 55 55 55 0 1 0 1 0
ft53.1 54 2722 12 7531 7531 7531 7531 6768 183 218 91 145
ft53.2 54 2680 25 7630 8026 8026 8026 - 29842 - - -
ft53.3 54 2306 48 9473 10262 10262 10262 - 15693 8629 - -
ft53.4 54 1218 63 14425 14425 14425 14425 121 11 2 5 5
ft70.1 71 4783 17 39313 39313 39313 39313 363 27 48 17 18
ft70.2 71 4714 35 39843 40101 40419 40728 - - - - -
ft70.3 71 4384 68 41413 42535 42535 42535 - 61197 28691 - -
ft70.4 71 2154 86 53072 53530 53530 53530 - 769 315 308 249
kro124p.1 101 9814 25 37861 38762 39420 39420 - - - - -
kro124p.2 101 9738 49 38809 39841 41336 41336 - - - - -
kro124p.3 101 9339 97 41578 43904 49499 49570 - - - - -
kro124p.4 101 5260 131 65445 73021 76103 76103 - - - - -
p43.1 44 1778 9 28140 28140 28140 28140 288 4 2 6 5
p43.2 44 1724 20 28480 28375 28480 28480 279 - - - -
p43.3 44 1600 37 28835 28766 28835 28835 177 - - - -
p43.4 44 795 50 83005 83005 83005 83005 88 35 11 11 13
prob.42 42 1596 10 243 243 243 243 145 6 15 8 9
prob.100 100 9579 41 1027 1045 1163 1346 - - - - -
rbg048a 50 1569 192 351 351 351 351 21 1 1 1 0
rbg050c 52 1703 256 467 467 467 467 3 1 1 1 1
rbg109a 111 1748 622 1038 1038 1038 1038 13979 2 1 2 2
rbg150a 152 2647 952 1748 1750 1750 1750 - 4 2 2 2
rbg174a 176 3309 1113 2033 2033 2033 2033 632 9 11 6 6
rbg253a 255 5125 1721 2940 2950 2950 2950 - 122 107 22 16
rbg323a 325 10021 2412 3137 3140 3140 3140 - 1714 745 159 193
rbg341a 343 9884 2542 2543 2568 2568 2568 - - - 70997 -
rbg358a 360 17998 3239 2529 2545 2545 2545 - 20127 12504 2179 791
rbg378a 380 18412 3069 2771 2809 2816 2816 - - - - -
ry48p.1 49 2222 11 15805 15805 15805 15805 12483 - - - 27300
ry48p.2 49 2188 23 15747 16074 16666 16666 - - - - -
ry48p.3 49 1973 42 18156 19490 19894 19894 - - - - -
ry48p.4 49 1046 58 31446 31446 31446 31446 97 306 92 382 234

moved all parts from model CUTR∗ which are only relevant in the capacitated
case, i.e., the flow system with the f -variables. The load-dependent models
LCUTR∗+ and PLCUTR∗+ do not make sense for the SOP since they mainly
focus on modeling the vehicle capacity. A position-dependent model as shown
e.g., in Godinho et al. (2011, 2014) may be appropriate to model the prece-
dence relations. In preliminary tests on large benchmark instances we, however,
observed much longer running times compared to the modified CUTR∗ model.
Thus, we only report results for the model CUTR∗.

Table 6 shows branch-and-cut results for instances for the SOP from the
TSPLIB. The best known (BK) lower and upper bounds (LB,UB) and fastest
solution times are obtained from different articles (Ascheuer, 1995; Ascheuer
et al., 2000; Gambardella & Dorigo, 2000; Gouveia & Pesneau, 2006; Anghi-
nolfi et al., 2011; Cire & Hoeve, 2013). Note that the BK results are obtained
on different hardware so they are not directly comparable to our CPU times.
Dashes “-” in the tables mean a reached time or memory limit. We compare
four different branch-and-cut configurations BC1-4: The heuristic separation
and inequalities (24) are only active in BC1-2, we set ∆G = 0.5 for BC1/3 and
∆G = 0.9 for BC2/4. Lower and upper bounds BCx are the best over all four
branch-and-cut algorithms.

Our branch-and-cut algorithms were able to solve 9 instances for the first
time (instance names marked bold in Table 6) and to significantly improve the
lower bounds of the residual 9 open instances. Even large instances with hun-
dreds of nodes could be solved to optimality (“rbg”-instances). Inequalities (24)
used in BC1-2 are able to close the gap for instances with a large number of
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Table 7: Comparison of branch-and-cut algorithms to MO by Montemanni et al. (2013) for
SOPLIB instances. Bold instance names mark instances solved for the first time. Bold bounds
and CPU times denote the best results. (The UB of MO for instance R.400.1000.15 seems to
be wrong.)

LB UB time in seconds

Instance |A| |R̃| MO BC BCH MO BC BCH MO BC BCH

R.200.100.1 39402 0 61 61 61 61 61 61 426 28 88
R.200.100.15 7089 991 1257 1560 1585 1792 3111 2003 - - -
R.200.100.30 2338 604 4185 4216 4216 4216 4216 4216 - 14 20
R.200.100.60 690 336 71749 71749 71749 71749 71749 71749 0 0 1
R.200.1000.1 39402 0 1404 1404 1404 1404 1404 1404 169 42 628
R.200.1000.15 6315 1005 14565 18741 18936 20481 27598 21393 - - -
R.200.1000.30 2286 600 40170 41196 41196 41196 41196 41196 - 9 14
R.200.1000.60 786 327 71556 71556 71556 71556 71556 71556 2 0 0
R.300.100.1 89102 0 26 26 26 26 26 26 2240 199 521
R.300.100.15 10254 1742 2166 2690 2802 3161 - 3355 - - -
R.300.100.30 3722 982 5839 6120 6120 6120 6120 6120 - 1366 2411
R.300.100.60 1066 500 9726 9726 9726 9726 9726 9726 1 1 1
R.300.1000.1 89102 0 1294 1294 1294 1294 1294 1294 19864 258 1581
R.300.1000.15 10191 1653 21096 26650 26940 29183 43873 31291 - - -
R.300.1000.30 4094 971 51495 54147 54147 54147 54147 54147 - 37 60
R.300.1000.60 1083 498 109471 109471 109471 109471 109471 109471 2 1 1
R.400.100.1 158802 0 13 13 13 13 13 13 4822 113 944
R.400.100.15 14006 2311 2747 3414 3516 3906 - 4228 - - -
R.400.100.30 4708 1253 7755 8165 8165 8165 8165 8165 - 12 28
R.400.100.60 1361 662 15228 15228 15228 15228 15228 15228 49 3 3
R.400.1000.1 158802 0 1343 1343 1343 1343 1343 1343 3004 56 720
R.400.1000.15 13564 2389 28159 35103 35364 29685 50600 43268 - - -
R.400.1000.30 4868 1238 79868 85128 85128 85132 85128 85128 - 224 290
R.400.1000.60 1478 684 140816 140816 140816 140816 140816 140816 42 3 4
R.500.100.1 248502 0 4 4 4 4 4 4 9760 165 1455
R.500.100.15 16775 2972 3543 4517 4628 5361 - 5724 - - -
R.500.100.30 6649 1670 8600 9665 9665 9665 9665 9665 - 2144 2073
R.500.100.60 1819 830 18240 18240 18240 18240 18240 18240 11 7 7
R.500.1000.1 248502 0 1316 1316 1316 1316 1316 1316 9383 1101 1425
R.500.1000.15 17866 2980 32950 42222 43134 50725 - 54049 - - -
R.500.1000.30 6360 1626 91272 98987 98987 98987 98987 98987 - 368 397
R.500.1000.60 1805 840 178212 178212 178212 178212 178212 178212 26 7 7
R.600.100.1 358202 0 1 1 1 1 1 1 6652 29 857
R.600.100.15 21474 3603 3656 4713 4803 5684 - 6254 - - -
R.600.100.30 7323 1990 11841 12465 12465 12465 12465 12465 - 610 640
R.600.100.60 1980 991 23293 23293 23293 23293 23293 23293 8 13 14
R.600.1000.1 358202 0 1337 1337 1337 1337 1337 1337 23005 246 1083
R.600.1000.15 23395 3778 36546 46293 47042 57237 - 61164 - - -
R.600.1000.30 7603 1923 116037 126798 126798 126798 126798 126798 - 2303 2050
R.600.1000.60 2196 1001 214608 214608 214608 214608 214608 214608 9 13 13
R.700.100.1 487902 0 1 1 1 1 1 1 13782 270 4842
R.700.100.15 25338 4334 4494 5845 5946 7311 - 7427 - - -
R.700.100.30 8606 2267 13663 14510 14510 14510 14510 14510 - 429 524
R.700.100.60 2514 1146 24102 24102 24102 24102 24102 24102 46 24 25
R.700.1000.1 487902 0 1231 1231 1231 1231 1231 1231 56712 1006 13341
R.700.1000.15 25845 4409 40662 53455 54351 66837 - 73997 - - -
R.700.1000.30 9104 2327 118718 134474 134474 134474 134474 134474 - 15865 7934
R.700.1000.60 2592 1194 245589 245589 245589 245589 245589 245589 75 24 24

precedence relations but for large graphs it was better to ignore them since the
separation problem consumed too much time. We used the same primal heuris-
tics as for the m-PDTSP which were designed to also consider capacities and
thus lead to unnecessary long CPU times in some cases. However, heuristics for
the SOP were not the aim of this paper.

In Table 7 we compare two variants of our branch-and-cut algorithms to the
state-of-the-art results for the SOPLIB instances by Montemanni et al. (2013)
which consist of 200 to 700 nodes. The existing approach (MO) had a CPU time
limit of 2 days, whereas we set a limit of 1 day. For both branch-and-cut variants
we set ∆G = 0.9, deactivate inequalities (24) and the heuristic separation. In
BCH we run our primal heuristics whereas in BC we skip them to save time.
We were able to solve 12 instances for the first time and significantly improved
the lower bounds for the residual 12 open instances.

8. Conclusions

In this paper we have addressed the one-to-one multi-commodity pickup and
delivery traveling salesman problem (m-PDTSP). We have shown that that the
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m-PDTSP is equivalent to the 1-PDTSP (a different variant of pickup and de-
livery problems where only a single commodity is considered) with additional
precedence constraints defined by the source-destination pairs of each commod-
ity and have taken advantage of this relation to provide models for the m-
PDTSP that are built by combining two different modeling components: one
modeling flows and capacity constraints and the other modeling precedence
relations. With respect to the precedence relation component, we have also in-
troduced new inequalities based on sequences and logical implications of prece-
dence relations which are able to significantly enhance the LP bounds, especially
for instances with a large number of precedence constraints. For the capacity
constraint component we have also presented alternative ways to model the ca-
pacity constraints based on load-dependent layered graphs which are beneficial
for tight capacities in terms of LP bounds. Several variants of a branch-and cut
algorithm were developed based on the presented models. These approaches
were combined with several preprocessing methods, primal heuristics, and sep-
aration routines for the SOP inequalities. Especially for tightly capacitated
instances with a large number of commodities we are able to outperform the
approaches by Hernández-Pérez & Salazar-González (2009). Additionally, we
have also considered the uncapacitated m-PDTSP which is equivalent to the
TSP with precedence constraints (or sequential ordering problem). Here, an
adapted variant of our branch-and-cut algorithm is able to solve to optimality
several open instances from the TSPLIB and the SOPLIB.
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