
Overview of Optimization Problems in Electric
Car-Sharing System Design and Management

Georg Brandstätter, Claudio Gambella, Markus Leitner, Enrico Malaguti,
Filippo Masini, Jakob Puchinger, Mario Ruthmair, and Daniele Vigo

Abstract Car-sharing systems are increasingly employing environmentally-
friendly electric vehicles. The design and management of Ecar-sharing systems
poses several additional challenges with respect to those based on traditional
combustion vehicles, mainly related with the limited autonomy allowed by current
battery technology. We review the main optimization problems arising in Ecar-
sharing systems at strategic, tactical and operational levels, and discuss the existing
approaches often developed for similar problems, for example in car-sharing
systems with traditional vehicles. We also outline open problems and fruitful
research directions.

1 Introduction

The purpose of this paper is to summarize the main contributions to the definition
and solution of optimization problems arising in the design and management of car-
sharing systems which use electric vehicles (EV).

Car-sharing is a general public mobility mode that is based on the shared use
of vehicles by a set of users, who are generally subscribers of the service and
pay flat and per-use fees. These systems were introduced around 1970–80 in some
limited pilot implementations (see Shaheen et al. 1998), but have only recently seen
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a considerable development in urban areas. In huge cities congestion and parking
costs make the ownership of private cars much less attractive for citizens who rely
on public transportation for their regular commuting, and need cars only for special
purposes. For a general overview of car-sharing systems we refer to Shaheen et al.
(1998) and Millard-Ball et al. (2005), whereas a recent survey on optimization
problems arising in such context is given by Jorge and Correia (2013). Finally,
the important aspect of demand estimation for car-sharing systems is discussed in
Stillwater et al. (2009) and Schmöller and Bogenberger (2014).

Car-sharing systems are increasingly employing environmentally friendly vehi-
cles that may reduce the overall negative impact of the mobility on the environment
and may have easier access to congested urban areas. For car-sharing systems the
most commonly used environmentally friendly vehicles are indeed electric ones. In
this paper, for short we indicate car-sharing systems employing electric vehicles as
Ecar-sharing systems.

As described in Pelletier et al. (2014, 2016), several types of electric vehicles
actually exist and their characteristics may heavily influence their use possibilities
in general and in relation to shared transportation systems. In particular, we consider
plug-in electric vehicles (PEVs) that may be charged by plugging-in them into the
electric grid. In turn, these vehicles can be classified into plug-in battery electric
vehicles (PBEVs), which use the power provided by the battery only, and plug-in
hybrid electric vehicles (PHEVs) which also have an internal combustion engine.
Both vehicle types are able to recover energy generated during travel (from braking
and driving downhill) to recharge the battery. Whenever no specific distinction is
required, we call all these vehicles electric vehicles.

For what concerns the organizational issues, an important distinction has to
be made between two-way (or roundtrip) systems, in which the vehicle must be
returned to the station where it has been picked up, and one-way systems in which
vehicles may be also returned to a different station. The second model is clearly
more flexible for the users but, as we will extensively discuss in the following, it
requires a rebalancing of the vehicles at different stations during the service. We
finally mention that recently some car-sharing systems in which vehicles are no
longer based at specific stations were introduced. Such systems are generally called
free-floating (see e.g., car2go and BMW DriveNow).

Designing and operating car-sharing systems which use electric vehicles poses
additional technological and practical challenges with respect to the systems
employing traditional combustion vehicles. For example, the relatively limited
autonomy of currently available electric cars requires recharging the vehicles during
the day, which has to be performed at specific charging stations. In addition, due
to the high costs involved, not too many charging stations have been built, and
charging times can be quite long unless expensive fast-charging stations are present.
Finally, the electricity consumption is considerably affected by the driving and
environmental conditions (e.g., the speed profile or the outside temperature) that
need to be accurately modeled to better estimate the actual charge status of the
vehicles during the day.

In the following sections we examine the main problems that are relevant for the
optimal design and management of electric car-sharing systems. We note that the
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existing literature on Ecar-sharing is very limited. Therefore, on the one side we
highlight the optimization problems that arise in this context. On the other side,
we examine the relevant literature on related problems, such as works focusing
on electric vehicles (privately owned, taxis, etc.) or on car-sharing systems with
conventional vehicles. For each such problem we both describe the characteristics
that have been faced so far in the literature and discuss the components of real-
world systems that have not been examined so far, so as to provide interesting and
practically motivated research directions.

More precisely, we organized the exposition into two separate sections. The first
part (Sect. 2) is devoted to strategic and tactical problems, which are appropriate
in the design of the systems. Within such category falls mainly the problem of
locating the charging stations for the electric vehicles and for privately owned cars
(Sect. 2.1). Section 2.2 discusses the tactical problem of defining the allocation
strategies for the assignment of vehicles to the stations.

In the second part (Sect. 3) we present operational problems that arise in
the short-term management of Ecar-sharing systems. Section 3.1 introduces the
relocation of vehicles between the available stations, which is required to balance
the supply and demand patterns. Section 3.2 examines the possibilities offered by
battery-swap technologies and Sect. 3.3 considers the computation of shortest paths
specifically designed to incorporate the main characteristics of electric vehicles.
Section 3.4 deals with the definition of multi-stop travels for electric vehicles that
typically occur in freight distribution. Finally, Sect. 4 draws some conclusions.

2 Strategic and Tactical Problems

As their name suggests, the problems of this class deal with making good high-
level, big-picture decisions. These determine the overall structure of the underlying
car-sharing system and can therefore have a great impact on how well the system
performs. Decisions made at this level are usually long-term, i.e., once they are
made, they cannot easily be reversed. As they often imply high cost, they also have
a significant impact on the car-sharing operator. Thus, a high solution quality is of
great importance for these problems. Combined with the fact that strategic decisions
need not be made very frequently, this suggests the use of exact or combined
methods for solving them.

Although some pilot systems are already in use, not much scientific literature
dedicated to the study of the design and operational challenges of Ecar-sharing
systems (from a general perspective) exists. Notably, Barth and Todd (1999) were
among the first to consider the use of electric cars in the context of car-sharing
systems. Based on a case study from a resort in Southern California, they concluded
that (already) 3–6 vehicles are sufficient per 100 trips of each day to satisfy
customer waiting times, but approximately 18–24 vehicles would be necessary to
also minimize the necessary number of relocations. Besides the number of vehicles
per trip, they conclude that the relocation algorithm and the used charging scheme
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are the main factors for successfully using such a system. Note that particular
characteristics of the considered use case include the fact that trips are shorter than
5 miles on average, thus, the charging state of cars never drops below approximately
70 %.

Considering a real-world use case from Genoa, Cepolina and Farina (2012)
are concerned with the design of a flexible, multi-station Ecar-sharing system for
pedestrian areas. Their aim is to optimize the size and distribution of the fleet among
a set of stations at the beginning of operation, so that the sum of total transportation
and waiting costs is minimized. Particular characteristics of the system include the
possibility for instant access, open ended reservation and one-way trips. A simulated
annealing approach that uses a microscopic simulation of user behavior and waiting
times is developed, in which a subset of users is assumed to be flexible in the sense
that they have an associated set of acceptable stations. Recharging is not explicitly
treated but simply assumed to occur in idle times and no explicit relocation actions
are considered (i.e., relocation by users). The authors analyze the cost changes
with respect to the total number of vehicles and, as in Barth and Todd (1999), the
influence of the vehicle-to-trip ratio on the total average waiting time.

Other pilot implementations are that of the Kyoto public car system project
described in Kitamura (2002), and the system with different types of electric
vehicles discussed in Luè et al. (2012).

Strategic decisions arising in Ecar-sharing systems mainly involve planning
locations and sizes (i.e., numbers of charging slots) of charging stations throughout
the operational region. The operator’s main goal is to minimize their cost arising
from building the stations while at the same time ensuring that the profit obtained
from satisfied user requests during operation is maximized. Since users will only
consider using a car-sharing system if their requests are accepted with a relatively
high probability, an operator is facing a difficult trade-off between the initial costs
to set up the car-sharing system (long term investment) and the profits obtained later
on (operational phase), especially since the latter are highly uncertain.

Tactical decisions are instead related to mid-term planning horizons. Within
this time horizon the main optimization problem that is relevant in Ecar-sharing
systems is that of allocating the vehicles to the charging stations. Such a problem
is mainly relevant for two-way models in which the initial position of the vehicles
is critical and may need to be adjusted whenever substantial changes in the demand
distribution patterns occur.

2.1 Location of Stations

As mentioned above, a key factor determining the performance of a car-sharing
system is the location of each currently unused car within the system, as it
determines which customers can actually use it. Since many car-sharing systems
are station-based (i.e., cars are always picked up from and returned to a fixed set of
parking spots owned by the car-sharing company), the location of these stations
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Table 1 Classification of the literature related with location of charging stations

Category Methodology

Type Vehicle type Exact Heuristic/simulation

Car-sharing Electric Boyacı et al. (2015)

Private fleet Electric Baouche et al. (2014),
Cavadas et al. (2015),
Chen et al. (2013), Frade
et al. (2011), González
et al. (2014), Wang and
Lin (2013), Worley et al.
(2012), and Xu et al.
(2013)

Chen et al. (2013), Ge
et al. (2011), Hess et al.
(2012), and Wang et al.
(2010)

Taxi cabs Electric Asamer et al. (2016) Sellmair and Hamacher
(2014)

Car-sharing Traditional Correia and Antunes
(2012) and Correia et al.
(2014)

Fassi et al. (2012)

becomes equally important. This is especially true for those systems which use
electric cars, since they must usually be recharged at the aforementioned stations
during the day in addition to (fully) recharging them overnight.

In the following, existing studies on strategic decisions are classified into four
categories: (1) location of charging stations in Ecar-sharing systems; (2) location
of charging stations to serve privately owned cars; (3) location of charging stations
for electric taxi cabs; and (4) location of stations for car-sharing systems with non-
electric cars. Note that we include literature related to the latter three categories, as
the literature on Ecar-sharing systems is still sparse and as the arising optimization
problems share many characteristics. A first brief overview which acts as a guideline
to this section’s content is given in Table 1.

2.1.1 Location of Charging Stations for Ecar-Sharing Systems

Boyacı et al. (2015) describe a bi-objective mixed integer programming (MIP)
model for a station-based one-way system. Potential sites for the charging stations
are first found by solving a set covering problem. The authors then seek to optimize
the location and size of the stations, together with the number of vehicles, their
initial allocation and relocation during the system’s operation with respect to both
the operator’s revenue and the users’ benefit. To reduce the size of their model, they
use an aggregated model where all relocations happen from or to imaginary hubs,
each representing a set of stations, instead of between individual stations. The charge
state of each vehicle’s battery is not explicitly considered in the model—instead, the
necessary pauses for recharging must be provided as an input. The authors evaluate
their model for the Nice region by using data from an existing two-way car-sharing
system and analyze the effects of various parameters like increased demand on the
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optimal solution. A preliminary study on the design of a comprehensive vehicle-
sharing system involving various types of electric vehicles and different types of
ownership is described in Luè et al. (2012).

2.1.2 Location of Charging Stations for Privately Owned Cars

The most studied case is that of the location of charging stations for privately owned
cars. Frade et al. (2011) provide an MIP formulation to decide on the location
and capacity of electric vehicle charging stations with the objective of maximizing
the demand covered under a certain service level and budget constraints. They
conduct a case study based on real-world data from Lisbon (Portugal). A similar
model is later developed by Cavadas et al. (2015) and improved in order to provide
a better coverage when some portion of the demand can be transferred between
the successive stops of a trip. In addition to transfer of demand, the model is
further adapted to a more realistic case where the variation of demand during
the day is modeled by splitting the day into time intervals. The comparison of
the models using data from Coimbra (Portugal) under different parameter settings
reveals two important findings: (1) if there is a possibility of transferring demand,
its inclusion in the model might provide significant improvements of the solution;
and (2) independently from its transferability, the consideration of the demand based
on different time intervals prevents solutions with overcapacity, which might be the
case if demand is aggregated.

Wang and Lin (2013) consider a similar objective under budget constraints to
decide on the location of multiple types of charging stations which differ in charging
speed, and provide a MIP formulation for this problem. They also consider a variant
in which the total cost to satisfy all demands is minimized. Both formulations are
tested on a network from Penghu Island (Taiwan) and the test results show that the
consideration of mixed stations yields benefits in terms of objective values compared
to using a single station type only.

Minimization of the total cost is adopted also by Baouche et al. (2014) when
deciding on the optimal locations of the charging stations. Based on a survey
on the metropolitan area of Lyon (France), they split the surveyed region into
several demand clusters and calculate the energy demand at each of them. The MIP
formulation they propose then finds the minimum-cost set of potential charging
stations that covers all energy demands. The cost takes into account both the
construction of the stations and the energy demand for traveling to them. In addition,
each station has a fixed type that determines how much charging they can provide.
The individual state of vehicles, namely their location or charge state, and the
temporal component of demand is only considered in an aggregated way.

A similar approach is used by Chen et al. (2013) for the Seattle (WA, USA) area.
Their MIP model determines which charging stations should be opened to minimize
the total walking distance required for satisfying all demand. The authors note that
a simple greedy heuristic finds solutions of similar quality, but with a significantly
higher maximum walking distance.
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González et al. (2014) seek to find an optimal charging schedule for private
electric vehicles in the Flanders region of Belgium with respect to the cost of
electricity used. To estimate the recharging demand, traffic data for conventional
vehicles is used. While the locations of charging stations that are opened are not
considered in their problem variant (they assume that charging can happen at any
time and place), the authors note that in their optimal solution, some zones show
a charging demand significantly above the average, which suggests that they are
prime candidates for the construction of public charging infrastructure. They also
show that over 80 % of all current trips could be performed with electric vehicles
without requiring any charging outside of the owner’s home and note that much of
the charging required for the remaining vehicles could be done while the owners are
at their workplace.

In contrast to the exact methods used above, Ge et al. (2011) employ a genetic
algorithm to partition a planning area into zones and assign each of them a charging
station of appropriate size, using the required energy expenditure as a quality
criterion. Their algorithm is then evaluated on a test instance. Similarly, Hess et al.
(2012) describe a genetic algorithm for placing charging stations to minimize the
total trip distances. They use a traffic simulator, modified to account for electric
vehicles, to generate data for the inner city of Vienna, on which they evaluate their
algorithm.

Wang et al. (2010) describe a heuristic algorithm for finding good locations for
charging stations serving private electric vehicles, considering both existing gas
stations and entirely new spots as potential sites. Their approach considers a number
of objectives including demand coverage, factors relating to the power grid and
municipal planning factors (which seek to keep the stations away from places where
they might impact other traffic). The algorithm is evaluated on data gathered from
the city of Chengdu.

An integrated MIP model that optimizes both the location of charging stations
and the routing of electric vehicles is given by Worley et al. (2012), with the
objective being the minimization of the total cost, which consists of the costs for
building stations, charging vehicles and driving. Another MIP-based algorithm for
finding the optimal charging station locations is presented by Xu et al. (2013), who
consider customer accessibility (both spatial and temporal), number of charging
slots and crime safety as relevant factors.

2.1.3 Location of Stations for Electric Taxi Cabs

Electric taxi cab stations represent a good combination of the two previous
categories. Sellmair and Hamacher (2014) consider the problem of selecting existing
taxi stands as possible locations for charging stations and determining the number of
charging points per station. By using simulation techniques, customer trips between
taxis stands are generated. The simulation is based on the GPS data collected from
five conventional taxis in the city of Munich in Germany. The simulation takes the
state of charge into account for deciding whether trips can be accepted or not. An
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iterative heuristic approach is used to determine the number and location of the
charging stations.

Asamer et al. (2016) present a study based on operational data of a radio taxi
provider in the city of Vienna in Austria. Positioning data of approximately 800
taxis over 12 weeks, one for each calendar month, is used. The authors aim to find
locations for a limited number of charging stations dedicated to taxis. Instead of
assuming taxi stands as possible locations, regions are considered and the exact
locations within the selected areas are identified in a post-optimization phase, where
various soft constraints need to be considered. The spatially-distributed charging
demand is aggregated, meaning that start and end locations of taxi trips within each
region are summed up. Based on this data, a set-covering approach is used to model
the location problem with the goal of maximizing the coverage of the aggregated
demands. The problem is modeled as a MIP and solved using the IBM CPLEX
solver.

2.1.4 Location of Stations for Non-Electric Car-Sharing Systems

As noted in this section introduction, the problem of finding the optimal locations
of vehicle depots in conventional (i.e., non-electric) car-sharing systems is closely
related to that of finding the locations of charging stations for electric vehicles,
since the factors determining a station’s quality are similar (e.g., proximity to areas
of high demand). One key difference between these two problems is that models
for conventional car-sharing usually do not consider the vehicles’ fuel state, since
gasoline-powered vehicles can be refilled comparatively quickly.

Correia and Antunes (2012) describe MIP formulations that optimize the opera-
tor’s profit by finding the optimal set of vehicle depots that should be opened, as well
as their size and the allocation of vehicles among them. Three different models that
maximize the operators’ profit are studied, in which (1) the operator has full freedom
to decide whether or not to accept a potential trip; (2) all trips need to be accepted;
or (3) trips may only be rejected by the operator if no vehicle is available at the
pick-up station. The authors evaluate their model on input data for the Lisbon area
in Portugal, and conclude that the operator’s profits decrease significantly when all
trip requests must be fulfilled. In another publication, Correia et al. (2014) analyze
the effects of increased user flexibility on the operator’s profit. They develop an
MIP formulation that allows users to select one of several potential starting and
ending vehicle depots for each trip, with the additional option of providing them
with information about the availability of cars or parking spaces at the relevant
depots. By applying the model to the Lisbon data set from their previous paper, the
authors find that the flexible models improve vehicle usage, but increase walking
and total travel times.

In contrast to the aforementioned publications, which deal with finding an
optimal solution with respect to some measures of quality, others deal exclusively
with the simulation and evaluation of solutions. Fassi et al. (2012) evaluate the
effects of several growth strategies (like increasing the size of stations and opening



Overview of Optimization Problems in Electric Car-Sharing System Design and. . . 449

new ones) on the activity of stations and members, as well as the members’
satisfaction with the service.

2.1.5 Summary, Open Problems and Possible Research Directions

The main objectives in station location problems for (electric and non-electric) car-
sharing systems are to minimize the total cost or maximize the total profit of the
car-sharing companies. The characteristics of the location of charging stations for
privately owned electric cars can be mainly considered in two categories: problems
that aim to minimize total cost while satisfying all demand, and problems that aim
to maximize demand coverage under budget constraints. Additionally, objectives
pertaining to user satisfaction are sometimes considered. This includes, in addition
to the aforementioned demand coverage, objectives like minimizing the walking
distance of customers.

The objective of maximizing demand coverage in Ecar-sharing systems seems to
be an open problem in the literature and has yet only been addressed in the context
of electric taxi cabs (Asamer et al. 2016). As suggested by Wang and Lin (2013),
multiple types of charging stations can be included in location decisions. Such
models could also be extended to consider certain characteristics of the electric grid,
like varying charging capacity throughout the day. Improved solutions are obtained
when possible transfer of charging demand is considered by Cavadas et al. (2015)
for the stations dedicated to privately owned electric cars. Adaptation of this idea
to the Ecar-sharing systems might be worthwhile to investigate. To better capture
aspects related to the particular characteristics of electric cars (i.e., very limited
range, long recharging times) integrated models combining strategic and operational
aspects seem worth investigating. In that respect, we particularly refer to variants
that include detailed tracking of battery-state and recharging times. The high degree
of uncertainty in terms of energy usage for individual trips also suggests further
investigations of robust or stochastic problem variants. Furthermore, explicitly
capturing the trade-off between naturally arising conflicting objectives (such as long
term investment costs, short term profits, relative number of accepted user requests)
in terms of bi- or multi-objective problem variants seem worth further studies.

More generally, an aspect that is worth investigating is the study of inter-modal
people transportation problems that include (electric) car-sharing systems, i.e., to
study the integration of (electric) car-sharing with public transportation and other
means of transportation. Besides, considering the likely relatively short distances of
many car-sharing trips within cities, a study of the trade-off between vehicle cost
and vehicle range seems relevant for the case of electric cars.

Another possible avenue of research would be the development of a flexible
pricing scheme that considers the variation of demand throughout the network at
different times. This might eventually lead to a system where relocation of vehicles
is mostly user-based. It is, however, unclear whether such a system would find
acceptance among its potential users.
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2.2 Allocation of Vehicles to Existing Stations

Besides relocating vehicles between stations (as described in the next sections),
most papers do not seem to explicitly optimize the assignment of vehicles to
stations. On the contrary, it is typical that vehicles are considered as origin of a
given demand and stations are built and dimensioned to satisfy that demand, see,
e.g., Chen et al. (2013), Ge et al. (2011), and González et al. (2014). Whenever
the actual positions of vehicles throughout a certain planning period (typically a
day) are considered in an approach (that, e.g., considers a location-routing problem
combining the planning of stations or relocations), an (initial) allocation of vehicles
is implicitly optimized by not fixing the (initial) status, see, e.g., aforementioned
articles by Correia et al. (2014) and Boyacı et al. (2015). On the contrary, other
articles (such as Baouche et al. (2014)) do not consider these temporal components,
but simply design a set of stations (with their capacity) in order to be able to fulfill
the demand corresponding to the set of vehicles. Clearly, the latter, which in turn is
not so different from other classical assignment problems (p-center, set-covering),
is more appropriate for car-sharing systems in which only round trips are allowed
and issues such as relocation are not important.

One example of a model that considers the initial allocation of vehicles as a
decision variable to be optimized is given by Nakayama et al. (2002). The authors
describe a genetic algorithm to optimize, among other factors, the number of
vehicles within the car-sharing system and their location at the beginning of each
day, given a fixed set of charging stations with a similarly fixed number of parking
spots. The algorithm is then evaluated on data from an electric car-sharing operator
from Kyoto.

2.2.1 Summary, Open Problems and Possible Research Directions

Since the initial placement and allocation of vehicles to existing stations is rarely
considered as an explicit optimization problem but rather assumed to be given, no
particular objectives and general constraints have been identified.

An interesting aspect that needs further investigation concerns the integration of
vehicle allocation with general location and relocation aspects.

3 Operational Problems

We consider here the optimization problem arising in the operational management
of Ecar-sharing systems. Such problems may be grouped into two main classes. The
first one is related to the within-day optimal relocation of vehicles while the second
considers the possibility of exchanging the battery at charging stations so as to
restore vehicle autonomy. We also consider some relevant operational problems that
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have potential connections with the management of Ecar-sharing systems, namely,
the electric vehicle shortest path and vehicle routing problems.

3.1 Relocation of Vehicles for Multiple-Stations Car-Sharing

During the last years, the offer of one-way trip mode has experienced an increased
popularity in car-sharing services with fleets of conventional or electric vehicles.
One-way car-sharing systems can be free-floating, in the absence of fixed parking
spots, or station-based: in the latter case, reservations may be asked from the users.
Since literature on free-floating services is very scarce, this section is focused on
station-based systems. However, many issues described in this section apply to the
free-floating case as well. The one-way option allows for a considerable increase
in the number of potential customers interested in shared-use cars. This enhanced
flexibility has a strong impact on the vehicle distribution in the service-provider
network. Without the imposition of round-trips, an imbalance situation can occur
and make the problem of ensuring vehicle availability in under-supplied stations a
key issue for the system provider. In order to limit the unserviced trips and restrict
economic losses of the car-sharing company, two types of relocation strategies may
be implemented. In the first one, called user-based (UB) strategy, the relocation is
decided by the customer itself, whereas in the second one, called operator-based
(OB) strategy, relocation decisions are made by staff operators at a centralized or
distributed level. The main characteristics of the papers examined here are presented
in Table 2.

3.1.1 User-Based Strategies

From the system provider point of view, the organization of staff-relocation
operations can carry an important economic load and cause operational difficulties.
In order to alleviate such burden, Barth et al. (2004) introduce two user-based
relocation mechanisms called trip joining (or ride-sharing) and trip splitting.
Reduced prices are offered to customers willing to accept these modifications of
their trip mode. The trip demand data they consider is generated from the University
of California-Riverside Campus fleet (UCR IntelliShare) historical database. The
system offers trip joining when multiple users want to travel from one low-
vehicle-quantity station to a high-vehicle-quantity station, and trip splitting in the
opposite situation. Given the demand, a discrete-event time-step simulation model
is presented. The simulation allows to calculate the reduction in operator-based
relocations thanks to trip joining, trip splitting and the two techniques concurrently.
Simulation results show that, in most cases, trip splitting proved to be more effective
than trip joining in reducing the staff operators workload. Using these user-based
techniques, a 42 % reduction in the number of relocations is reported.
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Clemente et al. (2013) apply information and communication technology to the
management of a one-way Ecar-sharing system. Real-time monitoring tools are
used in order to propose economic incentives to the users, and help the rebalancing
of vehicles in the network stations throughout the day. The authors used a timed
Petri Net Framework to model the Ecar-sharing system. The customers response
to the proposed trip alternatives modifies the random switches in the Petri Net.
The proposed simulation model compares the “as-is” situation (no incentives), with
two potential “to-be” strategies. In the “to-be” scenarios, users are encouraged to
return cars as soon as possible (offline scenario) or to head to empty stations (online
scenario); the latter situation requires the online monitoring of the system. Results
on the Ecar-sharing system of Pordenone (Italy) are presented where the online
scenario proves to be more profitable for the service provider. The authors conclude
that relocation decisions rely on appropriate high-level strategic decisions; when
such decisions are not accurately taken (e.g., the station fleet size), the relocation
policy is not likely to be effective in solving the congestion problems.

To the best of our knowledge, user-based relocation strategies are not currently
implemented by car sharing providers. Although the aforementioned papers sim-
ulate the impact of such strategies on profit, their actual potential is yet to be
evaluated. However, nowadays some incentives to users are proposed in order to
reduce the workload of providers (e.g. car2go gives free riding time if the users
re-fuels the car).

3.1.2 Operator-Based Strategies

Existing car sharing providers usually perform overnight relocation. In the literature
different practical relocation methods are described. Examples of such techniques
can be found in Barth et al. (2004):

• Moving EVs with a truck (troublesome in cities)
• Towing a single EV to a “service” car
• Transporting operators to relocation positions by using a “service” car

Notice that, unless otherwise stated, the following papers evaluate the benefits of
introducing relocation during the daily service, regardless of the specific technique
that will be implemented.

Contributions by Kek et al. (2006) and Kek et al. (2009) are motivated by the
development of four shared-use vehicle companies in Singapore. The focus is on
a multiple-station company that allows one-way trips; the customer also has the
flexibility to modify the previously specified return station en-route. In the first
paper, a relocation time-stepping simulation model is proposed and applied on a
real set of shared-use vehicle data from commercial operations. Two operator-based
relocation techniques are proposed. When service level is the main concern, the
vehicle relocation from a neighboring station to an under-supplied station should
be performed in shortest time (i.e., travel time to the over-supplied station and
relocation duration). The inventory balancing strategy aims instead to relocate
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vehicles in order to gain an equilibrium in the vehicle distribution in the stations.
Cost efficiency is the objective of such technique. The simulation model is validated
with real commercial data trips over a typical one-month period. The performance
is measured in terms of number of relocations; besides, Kek et al. (2006) measures
time in which parking slots in a station are either full (full port time) or empty
(zero vehicle time). The simulated indicators show fidelity in replicating the trends
occurring in the real situation; besides, they provide information on the potential
cost savings which could be achieved without impacting the level of service. The
authors observe that the individual change of the car-sharing systems parameters has
no significant performance impact: this is due to the strong interrelation of operating
parameter in such systems.

In Kek et al. (2009), the authors present a three-phase optimization-trend-
simulation (OTS) decision support system for car-sharing operators to determine
a set of near-optimal manpower and operating parameters. A MIP in a time-space
network determines the lowest-cost resource allocation and vehicle scheduling,
given inputs on station characteristics, vehicle relocation costs and historical
customer usage patterns. In the second phase of Trend Filtering, the suggested
staff and vehicle activities output from phase one are filtered through several
heuristics in order to produce a recommended set of operating parameters. Such
output parameters are finally used in the relocation simulator previously described
in Kek et al. (2006). The solution approach has been tested on real operational data
from Singapore. Results show remarkable improvements in the system performance
according to the proposed measure of effectiveness.

Considering the same case study of Kek et al. (2006) and Kek et al. (2009) in
Singapore, in Nair and Miller-Hooks (2011) the aim is finding a least-cost fleet
redistribution plan such that most demand scenarios are satisfied. The probability
distribution of users demand is defined by data collected with an Intelligent
Transportation System infrastructure which enables monitoring of the trips. A
stochastic MIP with joint chance constraints is formulated. The feasible region of
the problem is nonconvex. Two solution methods are presented: when demand at
stations is correlated, an enumeration procedure based on the concept of p-efficient
points is applicable; when the demand at each station is assumed to be independent,
a cone-generation solution method is used. Solutions of the proposed case study
proved to be robust in simulation studies.

Jorge et al. (2014) present two methods for implementing operator-based reloca-
tion strategies. The strategic decision of location of stations is taken by adapting the
model proposed in Correia and Antunes (2012) to the case in which the demand
between existing stations is not always satisfied. The first relocation method is
based on a novel MIP formulation in a time-space network which aims to maximize
the daily profit of the car-sharing system. The second method is a discrete event
time-driven simulation for testing two real-time relocation policies. Such strategies
consider different frequencies for checking whether a station is a supplier (vehicles
in excess) or a demander (vehicles shortage). The two solution approaches were
applied, both independently and in a combined way, to several realistic scenarios
in a case study in Lisbon. The optimized relocation decisions for these networks
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indicated significant potential profit gain with respect to the case of no relocation
actions. The optimal solutions of the mathematical model provide upper bounds
on the economic gains that are achievable with relocations since its input data are
based on full knowledge of future daily trip demands. Even though trip reservation
is necessary in the considered system, the simulation results based on real-time
policies are remarkable.

Lee and Park (2013) propose an operation planner for relocation staff operations
in Ecar-sharing systems. The relocation scheme consists of three steps covering
the relocation strategy, the action planning and the staff operation planning,
respectively. The demand is estimated by using the extensive Jeju City dataset
on actual trips consisting of pick-up and drop-off points collected from a taxi
telematics system. Relocation is assumed to be carried out during non-operation
hours. The third phase is the main focus of the paper. It implements the relocation
staff operations (i.e., moving from an initial to a final station). Single relocation team
scheduling is considered for simplicity. The scheduling phase is tackled by using a
genetic algorithm in which the relocation distance is the main performance metric
considered.

In Bruglieri et al. (2014), the authors claim that relocation activities which
rely on a truck for auto transport may not be practically implementable in urban
environment, since stations may be hardly reachable by the trucks. To overcome
this problem, they propose the use of folding bicycles for staff operators relocation
movements from an under-supplied station (drop-off) to an over-supplied station
(pick-up). Such relocation approach generates a specific pick-up and delivery
problem called the Electric Vehicle Relocation Problem (EVRP). Given a set
of pick-up and drop-off requests defining the network graph, the relocation is
formulated as a Vehicle Routing Problem aiming to maximize the total number
of requests served. Their MIP model explicitly considers the battery degradation
profile using linear assumption. The estimation of the demand has been performed
by studying historical data on private car movements in the city of Milan, and
restricting these data to the estimated percentage of users interested in using the
car-sharing service. A car-sharing simulator has estimated the unbalances due to
the projected travel demand. Computational results on realistic instances show that
using two workers with a duty time of 5 h is sufficient to satisfy a high percentage
(about 86 %) of the relocation requests.

Boyacı et al. (2015) present an integrated (strategic, tactical and operational)
framework to decide on the location of stations (see Sect. 2.1.1), on the number
of parking slots to satisfy the uncertain user demand, on the assignment of users
to slots and on the operator-based relocation actions. The considered Ecar-sharing
system is one-way, non-free-floating and reservation-based: both the beginning and
the ending station of the trip have to be specified. Demand centers represent sites
that can be served by the same set of candidate stations; demands are obtained by an
aggregation of orders of rentals, sharing the same set of origin and destination points
and common departure and arrival time intervals. The considered graph is a time-
space network. A set of scenarios is considered for coping with the stochasticity
and seasonality of the demand. The authors develop a bi-objective MIP model.
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An aggregated model which uses the concept of virtual hubs is presented for the
practical solution of instances based on the large-scale car-sharing system in Nice.
Extensive sensitivity analysis for relevant parameters is performed. The model
evaluates the trade-off between operator benefit and users’ level of service, showing
that the investment in relocation personnel is worthy both from the company and
customers point of view.

3.1.3 Summary, Open Problems and Possible Research Directions

We now summarize the main constraints and optimization objectives considered in
the literature for relocation in Ecar-sharing systems.

At each network node, each activity is restricted to begin after the previous
one is completed (see Kek et al. 2009). Taking into account relocation action
and maintenance activities, the number of available vehicles is updated during the
operating day. A limit on the number of rejected demands and vehicle returns is
imposed.

There are a number of capacity constraints present in these models. In Kek et al.
(2009) and Boyacı et al. (2015), station capacity constraints are imposed: in each
time discretization step, the sum of available and unavailable vehicles in a station
can not exceed the station capacity.

In Kek et al. (2009), Nair and Miller-Hooks (2011), and Boyacı et al. (2015), the
authors limit the number of vehicles relocated out of a station with the number of
vehicles available at the start of the planning period; also, the number of vehicles
relocated to a station cannot exceed the number of available slots. These conditions
are called capacity constraints.

When time-space network representation is used (see Jorge et al. 2014), the
vehicle flow at each node in the time-space network must be preserved. The
stations must have enough parking spaces for vehicles present at each minute. Flow
conservation constraints are also considered in Bruglieri et al. (2014) and Boyacı
et al. (2015). In Boyacı et al. (2015), atom-coverage constraints are introduced. An
atom is a small geographic area that is eligible to receive the car-sharing service.
The number of operating parking spaces in all open stations constitutes an upper
bound to the number of relocation actions.

In Nair and Miller-Hooks (2011), the probabilistic level-of-service constraints
state that the redistribution plan must result in inventories that satisfy p-proportion
of all demand scenarios in the planning horizon. The resulting system is called a
p-reliable system.

In some cases (see Bruglieri et al. 2014) time windows for customers requests
are present. Therefore, specific service limitations, such as imposing precedence
constraints in the visit time of nodes and bounding the duration of a route are
considered.

Finally, specific restrictions characterizing Ecar-sharing systems are imposed in
Bruglieri et al. (2014) and Boyacı et al. (2015). In the first paper, the distance
traveled by an electric vehicle is assumed to be linearly proportional to the residual
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charge: it is imposed that an electric vehicle needs to have minimum residual
charge (level) in order to perform a trip. In the second paper, the electric vehicles
are required to be recharged in the arriving station after each rental operation. In
addition, the number of vehicles in the station should be greater than or equal to the
number of vehicles requiring charging.

In this specific area there are several open research directions. Regarding the
simulation approaches for the impact of user-based relocation strategies, Barth
et al. (2004) and Clemente et al. (2013) underline the interest of estimating user
participation rate in the proposed relocation activities. The first paper suggests to
collect extensive statistical data for making this forecast. The second one proposes
a detailed behavioral analysis of the users willingness to accept real time trip
suggestions which would permit a more precise trip pricing policy.

Other research directions are represented by integrating the relocation action
in the strategic planning phase of car-sharing management and to investigate the
adoption of real-time relocation policies. In addition, using multiple relocation
teams and combining operator-based relocation approach with pricing policies on
the parking stations offered to the users, all seem promising options.

Several papers have underlined the strong interrelation between the different
levels of decision-making in car-sharing systems problems. As already mentioned,
the strategic decision of the location of stations has a huge impact on the tactical
and operational issues, such as the routing of the shared-use vehicle fleet, in order
to satisfy users requests. An integrated modeling approach seems a promising line
of future research.

Car-sharing problems might be considered as real-world applications in which
a location-routing scheme is directly present or at least identifiable. The location-
routing problem is a research category which considers the integrated solution
approaches for tackling location problems in which the tour planning aspects are
strongly interrelated with the strategic decisions. To the best of our knowledge, in
literature, car-sharing problems have not been explicitly stated in location-routing
framework yet and we refer the reader to the survey by Nagy and Salhi (2007),
which provides a good introduction to the problem. More recently, Prodhon and
Prins (2014) update the first survey presenting the multi-echelon problems and
several other variants. Finally, the survey by Drexl and Schneider (2015) proposes
future research directions from the methodological and modeling point of view, such
as the integration of revenue management in location-routing formulations.

3.2 Battery Swap

One main challenge for the large-scale spreading of battery-electric vehicles is
their limited range and the fact that in contrast to traditional vehicles, re-charging
operations take a significant amount of time (with the exception of expensive
and not yet very widespread fast-charging stations such as Tesla Superchargers
and CHAdeMO). Especially for long distance travel, overnight recharging is not
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sufficient. Thus, battery swapping (rather then recharging) has been considered
as a viable alternative, in which the batteries are owned by a company and users
simply exchange their currently used (nearly empty) battery with a fully charged
one at predefined battery swapping stations (BSSs). A main advantage from a users
perspective is that this process can be done in a few minutes (i.e., approximately
in the same time frame needed for refueling a traditional car). Even if such
technological approach is made difficult by the lack of standardization on batteries
and by the huge investments required to set up the system, some interesting studies
were presented in the literature.

Yang and Sun (2014) study a location-routing problem arising in the delivery of
goods to customers using a fleet of electric vehicles (EVs). Given a set of customer
demands and of potential BSSs, the goal is to simultaneously determine the location
of the battery swapping stations, the allocation of customers to EVs as well as that
of EVs to BSSs. In addition, tours from the single depot to serve all customers are
designed that consider the selected BSSs and the driving range of the vehicles. The
objective is to minimize the total costs arising from the construction of BSSs and the
service of the demands with the EVs. Energy consumption and maximum vehicle
range are considered to be proportional to the traveled distance. Two flow-based
integer programming models are proposed; only the second one allows to revisit
BSSs (i.e., to pass at a station / customer multiple times). In addition, two heuristic
approaches are studied. The first one is a tabu search which mainly focuses on the
location of BSSs and uses a modified Clarke and Wright Clarke and Wright (1964)
savings algorithm to heuristically compute a set of routes based on the currently
selected swapping stations. A radius-covering method is applied to find an initial
set of BSSs. In addition, a hybrid heuristic combining various approaches (namely,
modified sweep heuristic, iterated greedy and adaptive large neighborhood search),
is described. The main idea is to initially ignore most of the constraints (i.e., battery
driving range, BSS location) and subsequently refine a candidate solution to satisfy
all conditions. Finally, a last phase aims at improving solutions that are already
feasible for the considered problem. Computational experiments are performed
using data sets from the CVRP in which all nodes are considered as potential BSSs.
Results show that revisits often pay off. The influence of different maximum driving
ranges is also analyzed.

Mak et al. (2013) aim to optimize location and sizing of BSSs at strategic
locations along a network of freeways. They argue that the strategic network
decisions need to be taken before observing the actual demand. Therefore, they
propose distribution-robust optimization problems where in a first phase the location
of BSSs needs to be decided while the number of batteries stored at each BSS
can be determined after the uncertain factors are realized. Two variants in which
either the expected building and operating costs are minimized (“cost-concerned”
model) or a robust estimate of the probability to meet a certain return-on-investment
target is maximized (“goal-driven” model) are considered. Models based on mixed-
integer second-order cone programming are derived and potential impacts of battery
standardization and advancements on the deployment strategy are studied. Com-
putational experiments are performed using instances based on the San Francisco
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Bay Area freeway network. It is also pointed out that there exist real world cases
(Israel) in which the set of candidate BSSs corresponds to the set of existing
gas stations and that upper bounds on the number of batteries per location need
to be considered. This restriction arises from the capacity of the electrical grid.
Furthermore, the number of arising swap-demanding EVs are treated by a Poisson
process, the swapping is assumed to be instantaneous, and a heuristic first-in-first-
out strategy for battery selection is considered.

Li (2014) studies the scheduling of electric transit buses when either battery
swapping or fast charging is employed. An exact branch-and-price algorithm
(including stabilization and an initial construction heuristic) as well as heuristic
variants based on truncated column generation, variable fixing, and local search
are developed. A computational study is performed on instances that are based
on publicly available real-world transit data. Besides comparing variants of the
proposed algorithms, the results achieved are benchmarked against approaches for
other types of buses (gas, diesel, hybrid). Despite the main disadvantage of electric
buses, such as the need of deadhead travels to battery stations, the author concludes
that the total operational costs of electric buses are smaller than those of the other
options. The use of electric buses, therefore, represents a viable alternative also
because they produce zero emissions during operation.

Other authors (see, e.g., Chen and Hua 2014) focus on the placement of battery
swapping stations without discussing too many aspects that differ from the planning
of other re-charging stations; we therefore refer to Sect. 2.1 for more details.

Another stream of research concerned with battery-swapping deals with the
replacement of degraded batteries within a fleet of vehicles by new ones. Almuhtady
et al. (2014) study different swapping and replacement policies within maintenance
of a fleet by a mathematical model as well as two metaheuristic approaches: genetic
algorithm and simulated annealing. Experimental results using data inspired from
real world are shown.

3.2.1 Summary, Open Problems and Possible Research Directions

Existing approaches in the literature are mainly concerned with either minimizing
the total costs in installing (and possibly maintaining) battery-swapping stations. In
addition, total routing costs are partially considered in case of classic vehicle routing
applications. One exception to this trend is given by Mak et al. (2013) who also con-
sider a variant in which the probability to meet a certain return-on-investment goal
is maximized. Most of the related works consider constraints limiting maximum
travel ranges (whenever a location-routing problem is considered) and restrictions to
relatively small sets of potential swapping stations (often only existing “traditional”
gas stations). Besides, upper bounds on the numbers of batteries per location arising
from limitations of the electric grid are considered (in particular if fast-charging is
employed).

Open problems in this area include the appropriate integration of charging
times within the overall models and the potential consideration of charging at
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different speeds instead of assuming a given number of available, charged batteries.
Furthermore, integration of aging and replacing aspects of batteries (with respect
distance traveled, charging cycles) into battery-swapping problems can be a relevant
topic.

3.3 Electric Vehicle Shortest Path Problems

This section discusses optimal path problems involving electric vehicles—with
focus on PBEVs—and their specifics. In the car-sharing context these problems
might be relevant when the provider wants to estimate the energy consumption of
customer trips or when navigation services are offered to customers.

In general one can think of many different practical problem variants of finding
an efficient path from A to B while respecting the battery limits (lower and upper
bound) of PBEVs. Among them, the following objectives might be relevant:

• minimize energy consumption,
• minimize travel time, and/or
• minimize total costs including costs for traveling, charging, drivers, etc.

Several additional aspects may be considered, e.g.:

• visits to charging stations,
• charging times,
• energy recuperation, i.e., negative energy values on arcs, and/or
• charging station capacities.

An extensive survey on EV shortest path problems and algorithms can be found
in Pelletier et al. (2016). In the following, we review important works and extend
this survey.

Artmeier et al. (2010) minimize energy consumption while allowing recuper-
ation. Since lower and upper bounds of the battery charge have to be respected,
the resulting problem is a variant of the constrained shortest path problem which
is NP-hard in general. However, here the optimized and constrained resource are
the same, finally leading to a polynomial-time algorithm, i.e., a modified Bellman-
Ford algorithm. Since the energy consumption on links also depends on the speed
on the previous link on the selected path, applying the label-setting algorithm on
the original graph is not possible. Thus, the authors describe the construction of
an energy graph in which nodes are replicated for each velocity value on incoming
arcs. Since the node degree in street network is three on average, the corresponding
energy graph is not much larger than the original one.

Eisner et al. (2011) extend the work by Artmeier et al. (2010) by applying an
adaptation of Johnson’s potential shifting technique to obtain non-negative edge
costs and finally run Dijkstra’s algorithm to execute queries in polynomial time.
Additionally, the idea of contraction hierarchies is used to further dramatically
speed-up shortest path queries.
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Sachenbacher et al. (2011) also improve the work by Artmeier et al. (2010)
by considering an A*-related shortest path algorithm. They show that an energy
consumption function depending on distance, elevation, and speed provides a
consistent heuristic for the A* algorithm, i.e., an energy-optimal route can be found.
Their approach significantly outperforms the standard Bellman-Ford and Johnson
variants and additionally allows to use dynamic energy information at query-time.

Cassandras et al. (2014) consider the problem of finding a path from A to B
of a single PBEV with minimal total time while respecting the battery constraints
and determining which and how long charging stations are visited. The total time
includes both travel and charging times. A non-linear MIP is presented and under
several assumptions the authors transform it to an LP: (1) at each node there is a
charging station with a fixed charging rate, and (2) all energy consumption values
on arcs are non-negative. The authors also study the path routing problem with
multiple vehicles involving traffic congestion issues and assuming that all vehicles
are controlled by a central system. Several non-linear MIPs are proposed to solve
this problem.

Arslan et al. (2014) deal with an NP-hard minimum-cost path problem for plug-
in hybrid electric vehicles (PHEVs) (with both combustion and electric engine)
with intermediate fueling/charging stations. They transform the original graph in
a way that only origin, destination, and fueling/charging nodes are left. Edges
represent the shortest paths between the corresponding nodes in the original graph.
When considering only PBEVs, it is possible to find a minimum-cost path from
A to B in this graph in polynomial time (e.g., by Dijkstra’s algorithm), visiting
fueling/charging stations if necessary. For PHEVs, the additional decision of
choosing the driving mode makes the problem NP-hard. In an extended problem
variant the authors additionally consider vehicle depreciation, stopping, and battery
degradation costs. An exact MIP model with quadratic constraints, a dynamic
programming and a shortest path based heuristic are presented to solve this problem.

3.3.1 Summary, Open Problems and Possible Research Directions

In earlier works, the main objective is to minimize the energy consumption on the
total path. More recently, researchers often consider the minimization of the total
travel time while respecting the energy limits, which might be more relevant in
practical applications. Additionally, complex cost functions are used combining the
(time-dependent) costs for traveling, charging, battery degradation, etc.

The most important common constraints are based on the physical limits of
the battery of PBEVs. Because of the currently still quite small battery capacities,
PBEVs quickly run out of energy. Recuperation, i.e., the recovery of energy when
breaking, may compensate partly for this deficiency. This, however, leads to negative
energy values on links and thus to more complicated optimization problems.

The systemic battery limits of PBEVs may also lead to further related constraints.
If visits to a given set of charging stations are allowed, then corresponding charging
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times and station capacities have to be considered, which may also be time-
dependent based on the overall state of the underlying electrical grid.

Many authors use simplified formulas to calculate the energy consumption on
links. Here, more realistic (possibly non-linear) functions involving a large number
of influencing factors may be considered. For some applications, such detailed
energy consumption models may not be needed, but nevertheless it should be
clear which components mostly contribute to the energy consumption. A sensitivity
analysis for a complex energy model might be performed to identify the crucial
aspects.

Most works consider only a single vehicle and search for the best path in
an egocentric point of view. For governmental stakeholders and local authorities,
however, it might be more relevant to consider a global system optimum rather than
a local egocentric optimum. Thus, more sophisticated models involving multiple
vehicles and complex evaluation functions may be considered in the future.

Realistic energy consumption models and cost functions often involve non-linear
terms. Finding accurate linear approximations for these functions might be a way to
finally obtain efficient solution approaches for these problems. Discretization might
be a promising candidate to reach this goal.

3.4 Electric Vehicle Routing Problem

This section discusses works on vehicle routing problems in which traditional
vehicles are either replaced by or mixed with PBEVs. Such problems might be
relevant for car-sharing providers if navigation services are offered which involve
finding routes visiting a set of locations given by the customer.

Since the battery capacity of electric vehicles is strongly limited, it may be
necessary to re-charge the battery along a single route, possibly multiple times. In
the literature, this limitation is handled quite differently, as discussed in the next
paragraphs. An early survey on sustainable VRP variants can be found in Lin et al.
(2014). The survey by Pelletier et al. (2016) summarizes several aspects of electric
vehicles, i.e., different types of electric vehicles, market penetration, incentives, OR
related works, and research perspectives. More details on the specifics of electric
vehicles can be found in Pelletier et al. (2014). Since the survey by Pelletier et al.
(2016) is quite extensive, here we only discuss papers which are particularly relevant
or not mentioned in the survey.

In the green VRP introduced by Erdoğan and Miller-Hooks (2012), routes
for alternative-fuel powered vehicles are determined. A compact MIP based on
Miller-Tucker-Zemlin Miller et al. (1960) subtour elimination constraints (Big-M) is
presented, minimizing the traveled distance while considering the limited distance,
possible visits to alternative fuel stations, and upper bounds on the number of tours
and their duration. In contrast to classical VRP variants, vehicles are assumed to be
uncapacitated here. Refueling time is assumed to be constant, which is usually not
the case for electric vehicles. The authors also propose two construction heuristics
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to create feasible solutions. The results indicate that as the number of fuel stations
increases, costs decrease for the same number of served customers, more customers
can be served, and the total distance traveled decreases.

Van Duin et al. (2013) examine the fleet size and mix Vehicle Routing Problem
with Time Windows with special focus on different types of electric vehicles for
goods distribution. The battery limitations are considered by setting a maximal
tour length which can be completed with a single battery charge, i.e., recharging
at specific stations is not allowed. A compact MIP based on Big-M constraints
is presented without solving the model. To find solutions for a case study in
Amsterdam, the authors developed a simple construction heuristic which provides
satisfying results in their application.

Schneider et al. (2014) extend the green VRP by integrating time windows
(VRPTW), customer demands, and capacity constraints to the problem, while
focusing exclusively on PBEVs. As a result, recharging times depend on the vehicles
battery charge when arriving at a recharging station, and assuming a full recharge.
The authors consider a hierarchical objective function first minimizing the fleet size
and second minimizing the total travel distance. A hybrid metaheuristic combining
variable neighborhood search with tabu search yields small gaps compared to a
compact MIP model with Big-M constraints solved by CPLEX.

Frank et al. (2014) consider the same problem as Schneider et al. (2014), but
involve load-dependent energy consumption: each arc is associated with an energy
consumption value both for an empty vehicle and a single load unit. Then, the total
energy consumption on an arc is linearly dependent on the amount of cargo loaded.
The authors provide several MIP models for this problem variant: (1) a compact
model with Big-M constraints, (2) a compact two/three-index-formulation with Big-
M constraints allowing at most one charging station visit between two clients, and
(3) a set-partitioning model. The same authors present in Preis et al. (2013) a more
detailed energy consumption model based on distance, altitude, load, and several
vehicle properties. In a compact MIP model with Big-M constraints for the electric
VRPTW, they minimize the total energy consumption. Additionally, the authors use
tabu search heuristics to solve this problem.

Felipe et al. (2014) also consider the same problem as Schneider et al. (2014)
except that (1) partial recharges at charging stations are allowed, (2) different
charging station technologies can be used at a station (faster charging is more
expensive), and (3) the objective is to minimize the charging and battery cycle costs.
A compact MIP model with Big-M constraints and a simulated annealing approach
incorporating local search in several neighborhood structures are proposed.

Goeke and Schneider (2015) extend the work by Schneider et al. (2014) by
considering a mixed fleet with both traditional vehicles and PBEVs in the electric
VRPTW. The main contribution of this article is that the energy consumption does
not only depend on the distance but involves more parameters, i.e., travel speed,
gradient of link, and current load. Here, the energy consumption may also be
negative, allowing recuperation and recovery of energy on downward slopes and
in breaking events. However, the battery is still fully recharged at a charging station
visit. The authors provide a compact MIP model similar to the one in Schneider et al.
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(2014) based on Big-M constraints but including non-linear parts related to load-
dependent energy consumption. Additionally, an Adaptive Large Neighborhood
Search algorithm is presented. Tests are performed on newly generated instances
and on the Solomon-based instances by Schneider et al. (2014). The authors also
consider different objective functions not only involving the traveled distance, but
also fuel and battery depreciation costs.

Hiermann et al. (2014) tackle the same problem as Schneider et al. (2014) but
additionally consider a mixed fleet of different PBEVs varying in the load and
battery capacity. A compact MIP model and an adaptive large neighborhood search
are presented to solve this variant.

Desaulniers et al. (2014) consider a generalization of the classical VRPTW
using only electric vehicles: additional nodes represent charging stations which
may be visited an arbitrary number of times. The authors also consider several
special variants of this problem: (1) at most one charging station can be visited
on each route, and (2) at each charging station visit the battery is fully loaded.
In the more general variant, there is no limit on the number of visited charging
stations and the battery may also be partially loaded at a charging station. The results
of these variants are compared, leading to the conclusion that in the unrestricted
variant routing costs and the number of needed vehicles can be reduced. The
authors present exact branch-price-and-cut approaches based on a classical set-
partitioning formulation for the considered problem variants. Much effort is put
into the development of efficient solution methods for the pricing subproblem,
which often represents a performance bottleneck in these approaches. Mono- and
bi-directional labeling algorithms are presented for the different variants, enhanced
with acceleration strategies based on ng-route relaxations and reduced graphs. To
decrease the integrality gap, two sets of valid inequalities defined on the route
variables are added: (1) the 2-path cuts, and (2) the subset row inequalities.
The presented approaches are tested on a benchmark set introduced in Schneider
et al. (2014) and generated from the classical Solomon VRPTW instances. All
instances can be solved in reasonable time. To the best of our knowledge, these
approaches represent the computational state-of-the-art for many variants of the
electric VRPTW.

Worley et al. (2012) consider a combination of location of charging stations
and routing of electric vehicles. They present an MIP model with variables for
all route segments (no intermediate depot or charging stations) but do not mention
how this model with an exponential number of variables is solved. The objective
is to minimize the total costs consisting of the costs for building stations, charging
vehicles, and driving.

Table 3 gives an overview of the different problem variants discussed in the last
two sections.
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3.4.1 Summary, Open Problems and Possible Research Directions

Most works consider the minimization of the total traveled distance, or more
generally the total costs including costs for traveling, fleet investments, battery
degradation, etc. Often, the number of vehicles used is minimized in a hierarchical
way (in contrast to a weighted objective or a multi-objective formulation). Some
authors, however, focus on the minimization of the total energy consumption which
seems to be less relevant for practical needs.

Common for many problem variants is the consideration of customer demands,
maximal vehicle load capacities, customer time windows, and clearly the highly
restricted battery limits. In more strategic problems, the vehicle fleet is heteroge-
neous in terms of propulsion type (combustion/electric), battery size (if applicable),
and/or load capacity.

Similar to Sect. 3.3, different (more or less detailed) energy consumption models
are used. Additionally, for VRP variants it is relevant to also consider the current
load for the energy consumption since it may change throughout the tour. The
battery limits for PBEVs are considered differently: either simply the tour length
is limited or the vehicles are allowed to visit charging stations within the tour.
In the second case, different models for charging are implemented: (1) constant
charging times, (2) full charging based on the current state of charge, or (3) partial
charging. Different technologies and therefore charging speeds and capacities may
be available at the stations to choose from.

In recent works, the researchers consider more integrated problem variants, e.g.,
by combining the location of charging stations with the routing part. Here, also the
technology, the number of charging points, and the electric capacity may need to be
decided for a new charging station.

There are existing models and exact approaches for load-dependent energy
consumption. However, there seems to be some room for improvement in terms
of model strength and efficiency of solution methods. Also more detailed energy
consumption models may be considered in the VRPs, cf. Sect. 3.3.1.

When considering capacities and technologies of charging stations the corre-
sponding electrical grid and its time-dependent load may be considered. In the
area of smart energy grids, researchers brought up the idea of using PBEVs as a
temporary energy storage to compensate high demands in peak hours (Kempton
et al. 2001). The integration of such features in existing VRP variants may lead to
even more complicated problems but probably would also improve their relevance
in real-world applications. The combination of the location of charging stations and
vehicle routing goes into a similar direction.
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4 Conclusions

In this paper, we reviewed the main optimization problems arising in the design and
management of car-sharing systems based on electric vehicles. For each problem
class, the relevant literature and the main practical issues arising from real-world
applications are discussed.

The most relevant research directions for each problem are:

• Location problems (see Sect. 2.1.5)

– Simultaneous consideration of different station types (e.g., slow and fast
charging stations)

– Incorporate detailed battery-state modeling in electric location-routing prob-
lems

• Relocation of vehicles for multiple-station car-sharing (see Sect. 3.1.3)

– Assess users willingness to modify the trip when incentives are offered
– Investigate the integration of user-based techniques in staff relocation
– Use real-time information for online relocation

• Electric vehicle shortest path problems (see Sect. 3.3.1)

– Use more realistic functions to calculate the vehicle’s energy consumption
– Find system-optimal paths in complex traffic networks rather than optimal

paths in an egocentric point of view

• Electric vehicle routing problems (see Sect. 3.4.1)

– Use more practically relevant objective functions
– Use more realistic energy consumption models, e.g., involving the vehicle’s

load
– Consider the (time-dependent) capacity and load of charging stations and the

underlying electrical grid

Besides tackling each of these problems individually, the study of combined
approaches (e.g., simultaneously optimizing the location of charging stations and
relocation decisions) is a worthwhile goal for future research.

Many open problems are discussed, indicating Ecar-sharing systems as a rich and
promising research area for optimization methods.
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