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Abstract

Concerns about greenhouse gas emissions and government regulations foster the use of electric
vehicles. Several recently published articles study the use of electric vehicles (EVs) in node-routing
problems. In contrast, this article considers EVs in the context of arc routing while also addressing
practically relevant aspects that have not been addressed sufficiently so far. These include dynamic
charging of EVs while driving, speed-dependent energy consumption, and non-linear charging func-
tions that depend on the battery state-of-charge and the charging time. A generic way of dealing
with these aspects is introduced through the concept of an energy-indexed graph, which is used to
derive an integer linear programming formulation and an exact solution framework based on branch-
and-cut. Efficient construction heuristics and a local search for approximately solving large-scale
instances are proposed. A computational study is performed on realistic problem instances. Besides
analyzing the performance of all proposed methods, the obtained results also provide insights into
strategic decisions related to the battery size and the amount of charging facilities.

Keywords: integer programming, arc routing, electric vehicles, speed-dependent energy con-
sumption, non-linear charging, branch-and-cut, heuristics

1 Introduction

Increasing driving ranges together with low maintenance costs foster the replacement of vehicles with
combustion engines by (battery) electric vehicles (EVs) [33]. This trend also holds for company fleets
in which vehicles may be (partly) replaced by EVs that can be conveniently recharged (overnight) using
charging stations that are installed at car parks of the respective companies. Nevertheless, the use of EVs
imposes additional challenges (compared to combustion engine vehicles) since time-demanding charging
breaks during service may be necessary in the case of long trips and since their energy consumption
heavily depends on the driving speed (among other factors) [4, 34].

The worldwide fleet of EVs grew 54% to about 3.1 million in 2017, and according to the International
Energy Agency, this number is forecasted to hit 125 million by 2030 (www.iea.org/gevo2018, 2019-06-
18). Nevertheless, EVs still make up less than 1% of passenger vehicles worldwide. One of the major
pain points for a wide adoption of EVs is the sparse or non-existing infrastructure. Thus, drivers need to
identify appropriate charging stations before trips and reserve time to charge up the batteries. Classical
stationary charging in garages and parking lots, and opportunity charging (at, e.g., bus stops or shopping
malls), require the drivers to include charging times in their itineraries and do not fully remove the range
anxiety, one of the major barriers for adopting EVs at a large scale. Dynamic charging techniques that
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allow to recharge a vehicle while being driven can play a significant role in the massive adoption of
electric vehicles, both for passenger and cargo transportation. This is because dynamic charging reduces
the need for overnight or stationary charging and increases the reliability of EVs. In the long run it also
allows for lowering the price of EVs, due to the fact that smaller batteries would be sufficient, as they
only need to supply power between segments with dynamic charging infrastructure.

Adoption of dynamic charging in production, manufacturing, logistics and seaport operations is
already happening at a fast pace. Modern warehouses are nowadays largely automated by robots that
have an electric drive and require frequent recharging. Dynamic charging can be implemented via
the inductive power transfer (IPT) technology, which enables dynamic wireless charging [27]. In this
scenario, a mobile electric device is recharged while moving along a dedicated lane equipped with an IPT
system. The company [42], for example, offers automated wireless charging systems for forklifts, mobile
robots and industrial trucks. According to [42], up to 30% higher fleet availability can be achieved
by eliminating interruptions caused by stationary charging. Dynamic charging has also been already
deployed for passenger and cargo transportation. Multiple bus lines in London, Turin and Madrid have
been successfully equipped by IPT systems in a pilot study conducted by the company [23]. Recent
surveys regarding wireless power transfer technologies for EVs can be found in Ahmad et al. [1], Bi et al.
[11]. An alternative dynamic charging technology transfers the energy from the metal rails installed in
the road via a movable arm attached to the bottom of an electric vehicle, or a truck, see the pioneering
project eRoadArlanda at the Stockholm airport Arlanda (eroadarlanda.com, 2019-06-19).

The utilization of inspection robots (especially in some complex and dangerous working environments)
is an emerging and highly relevant application of arc routing. Inspection robots are typically equipped
with visible-light cameras and/or infrared thermographs, and are sending the acquired information in
realtime to the data center for further processing (see, e.g., Wang et al. [41] for recent applications
arising in the maintenance of electric power systems, where a magnetic guidance system is used to guide
the robots). Dynamic charging is expected to significantly improve the efficiency of inspection robots
in particular when employed for daily maintenance tasks (see, e.g., examples of brachiating robots in
Menéndez et al. [30] and the survey by Allan and Beaudry [2]).

Overview and scientific contribution. This article provides a first study on the use of EVs in the
context of arc routing with possible dynamic charging. Given a network including a set of required arcs,
the Electric Arc Routing Problem (eARP) proposed in this article is to find a set of routes that visit all
required arcs with minimal total travel time while respecting the energy usage constraints imposed by
the EVs. Charging of EVs is possible along arcs (dynamic charging) during service and at the depot node
(stationary charging) before and after service. Though stationary charging could be easily integrated in
our problem formulations and solution approaches, we focus on dynamic charging that has the benefit
of avoiding time-consuming recharging breaks during service. The main contributions of this paper are:

• We introduce the concept of the energy-indexed graph that provides a generic way to deal with (i)
dynamic charging, (ii) speed dependent energy consumption, and (iii) non-linear charging functions
that depend on the initial battery state-of-charge (SOC) and the charging time. To the best of our
knowledge, the first two aspects have not been considered for EVs, while the third one has been
addressed for node-routing problems, e.g., by Montoya et al. [31], Baum et al. [7], Froger et al. [19].

• We derive a mathematical model on the energy-indexed graph and develop an exact solution
framework based on branch-and-cut.

• We propose to encode eARP solutions as sequences of required arcs, study the complexity of the
underlying feasibility problems, and propose a labeling algorithm for solution decoding.

• Based on the latter result, we derive efficient heuristics for obtaining feasible routes, which can be
used as a stand-alone approach or for the initialization of the exact solution framework.

• We provide an analytical description of a piece-wise linear approximation of the SOC function.

• We conduct a computational study on realistic problem instances and give insights on strategic
decisions related to the battery size and the amount of charging facilities.

2



The paper is organized as follows: In the remainder of this section we provide a literature overview
and a formal problem definition. The energy-indexed graph is presented in Section 2 along with the
Integer Linear Programming (ILP) formulation. Section 3 studies heuristics together with a solution
representation and a corresponding decoding procedure, whereas the algorithmic details of our branch-
and-cut implementations are given in Section 4. A computational study and managerial insights are
given in Section 5, and final conclusions are drawn in Section 6.

1.1 Related work

The use of electric vehicles has raised multiple issues in application fields related to transportation
logistics, green logistics and vehicle routing in general. A recent excellent survey of the existing research in
the field is given by Pelletier et al. [33]. Most of the optimization problems resulting from transportation
models that integrate the use of EVs are extensions of vehicle routing problems (VRPs) dealing with the
limited autonomy of EVs, time-dependency issues and, to a very limited extent, battery degradation,
see Pelletier et al. [34]. Given the difficulty of the resulting models, they are typically addressed with
approximate heuristic methods.

Several papers study the relation of energy consumption with the velocity of vehicles. Bektas and
Laporte [9] propose the Pollution-Routing Problem in which the operational cost, the number of drivers
and the cost of the green house emissions are simultaneously optimized by controlling the major factors
that affect the emissions, namely the vehicle speed and the load. To derive a tractable ILP model,
the authors discretize the speed function by using a small set of speed levels. In a follow-up work of
Franceschetti et al. [18], the authors propose the Time-Dependent Pollution-Routing Problem where the
routes for a fleet of vehicles that serve a set of customers must be determined together with the speeds
on each leg of the routes. The cost function takes into account traffic congestion, which, at peak periods,
significantly restricts vehicle speeds and increases emissions. Fukasawa et al. [20] also combine route
and speed optimization for VRPs, assuming that the fuel cost function is a strictly convex differentiable
function of the average travel speed over an edge. A branch-and-price algorithm is proposed with a
tailored labeling algorithm to deal with the non-linear pricing function. In a related work of Qian and
Eglese [35], the authors model the traffic congestion by assuming that the speed along each edge depends
on the time of the day. The authors consider a discretized time-horizon in which a VRP is solved so
that the overall CO2 emissions are minimized, while the time consumed for each route is bounded by a
constant.

More recently, Ferro et al. [16] study an extension of the Green VRP, which adds time-variant prices
for energy purchase, and different EV consumption and charging modes. The main decisions refer to
the speed of EVs, the loaded cargo and the battery charge at recharging nodes. The objective is the
minimization of the cost for the total travel distance and that for energy purchase depending on the
selected recharging modes. Recently, Macrina et al. [29] introduce a new variant of the Green VRP with
time windows where traditional and electrical vehicles jointly operate, and the limited autonomy of the
batteries of electric vehicles is taken into account. The possibility of recharging partially the batteries at
any of the available stations is considered, together with a limitation on the polluting emissions for the
conventional vehicles. The behavior of the proposed approach is evaluated empirically on a large set of
test instances.

To deal with the problem of deciding on charging stops and the corresponding amount of re-charged
energy between two services, Andelmin and Bartolini [3] and Froger et al. [19] enumerate all non-
dominated paths between two customers and use these paths in their integer linear programming formu-
lations. These path concepts are somehow related to our solution representation described in Section 3.1
when serving arcs instead of nodes and considering speed-dependent energy consumption and dynamic
charging.

While many authors have studied transportation problems incorporating the implications derived
from the use of electric vehicles within distribution management, very few papers deal with the effect
of battery degradation. Most existing electric VRP models assume that the battery-charge level is a
linear function of the charging time [15, 38] although in reality the function is non-linear, and difficult
to integrate within mathematical programming models, as its evaluation involves solving differential
equations. Pelletier et al. [34] address this issue and discuss tractable models for transportation problems
that will allow estimate charging and discharging behavior of EV batteries. Montoya et al. [31], Baum
et al. [7], Froger et al. [19] consider electric vehicle routing with realistic (non-linear) charging functions
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and several approximations for them. Charging functions are defined as two-dimensional functions
depending on SOC and time. The authors assume concave charging functions since no (relevant amount
of) energy is consumed during charging at a station.

In the eARP service demand is placed at the arcs of a directed network. Thus, from the perspective
of the design of vehicle routes the eARP closely relates to ARPs [12, 14]. In particular, the eARP is
equivalent to the well-known Directed Rural Postman problem (DRPP) [32] in case the battery capacity
is not restrictive. In Section 2 we give an alternative definition of the eARP that also relates it to
the generalized directed rural postman problem (GDRPP) introduced by Ávila et al. [5]. There are
some similarities between the eARP and the capacitated ARP with deadheading demand [6] when we
interpret the demands as energy consumption and the vehicles’ load capacity as battery capacity. In the
eARP, however, we allow more than one traversal options, recovering of the consumed resource (battery
charging), and more complicated functions to derive the resource consumption for a traversal. To the
best of our knowledge there is no work in the literature where issues derived from the use of EVs are
incorporated within an ARP.

1.2 Problem definition

An eARP instance is defined on a directed graph G = (V,A) representing the underlying network. Node
set V contains a depot node 1 at which m identical, initially fully charged, EVs with a battery capacity
of Q are located. Arc set A contains the set AR ⊆ A of required arcs that need to be traversed by at least
one such vehicle. A set of travel times T (a) (typically) resulting from the possible speeds for traversing
arc a is associated with each arc a ∈ A.

A solution to the eARP is a collection of feasible walks along with their associated travel times (one
for each EV) that covers all required arcs. A walk W = (a1, . . . , ak) with associated travel times
T = (t1, . . . , tk), tj ∈ T (aj), aj ∈ A, for all 1 ≤ j ≤ k, is feasible if the following holds: (i) W starts and
ends at the depot, and (ii) the SOC bj after traversing arc aj ∈ W must be in the interval [0, Q] for all
0 ≤ j ≤ k. SOC bj after traversing arc aj with travel time tj is defined as bj = β(aj , tj , bj−1), 1 ≤ j ≤ k,
where the initial SOC at the depot is b0 = Q and β is a generic (non-linear) function describing the
relation between the SOC bj−1 before entering arc aj and the SOC bj after traversing it in time tj . The
objective is to identify a set of m feasible walks S = {(W`, T `)}m`=1 that covers all the required arcs with
minimum total travel time. The eARP is NP-hard since it boils down to the DRPP [25] in case the
battery capacity is sufficiently large.

Assumptions. We next discuss four main assumptions made in the above definition of eARP and
its solutions: (i) Directed demand: As opposed to several other arc routing problems eARP is based
on a directed graph and assumes that demand is placed on arcs rather than on (undirected) edges.
Extensions to the most general case of mixed (i.e., undirected and directed) demands are, however,
straightforward for all developments proposed in this article. While we explicitly comment on this
aspect for the mathematical model in Section 2, we refrain (for the sake of readability) from introducing
the necessary additional notation and case distinctions in all other sections. (ii) Finite sets of travel times
and SOC values: We assume that the set of travel times T (a) for each arc a ∈ A is finite. Furthermore,
we use B to denote the set of SOC values an initially fully charged vehicle may obtain at any node u ∈ V
and assume that B is finite, too. The latter assumption is w.l.o.g. as long the set of travel times is finite
and each arc is traversed only a finite number of times. Since each travel time results from a particular
(average) driving speed along an arc, one may, however, argue that this set actually contains an infinite
number of elements. To this end, we note that it is unlikely to know the precise driving speed along each
arc in advance while planning the routes to be driven later on. This issue is also discussed in Pelletier
et al. [34], where discretization is presented as an alternative for modeling the behavior of a battery
during discharging and charging. (iii) Speed selection: While allowing a vehicle (driver) to select its
speed (from a predefined set of speeds) seems reasonable in some applications (e.g., for inspection robots
performing maintenance tasks), this may not be easily possible in others (e.g., vehicles traveling on roads
since they depend on traffic conditions). To this end, it is crucial that all possible travel times on an arc
correspond to speeds that are possible under typical conditions. Besides, we observe that driving slower
than originally planned will (usually) induce a smaller energy consumption. While a different route
may be preferable if one would have known the arising conditions beforehand, the planned route will
nevertheless remain battery feasible and therefore not lead to severe problems (such as stranded vehicles
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Figure 1: (a) Example instance; (b) optimal solution to it. Required arcs shown by solid lines, SOC
values for the first and (where applicable) second visit given next to the nodes; used travel times next
to the arcs.

with empty battery). (iv) Recharging cycles: eARP solutions may contain cycles without required arcs
that are driven to increase the SOC of a vehicle. While this sounds undesirable at first glance, we observe
that such recharging cycles are only included if they lead to a feasible solution with overall minimum
travel time. As we discuss in Section 5.4, such cycles did occur rarely in our experiments and only in
case of extremely small battery capacities and very few charging facilities.

Notation. The relations between travel time, initial and final SOC for each arc a ∈ A and t ∈ T (a)
are described via the battery SOC function β : A × R+ × B 7→ B ∪ {−∞} where β(a, t, b) = −∞ if
it is infeasible to cross the arc a with travel time t and initial SOC b. Since the depot can be visited
multiple times in a single walk, we augment graph G by an artificial depot node 0, which serves as the
unique start and end point of each vehicle’s tour. Node 0 has incident arcs (0, 1) and (1, 0) connecting
it to the real depot with an associated travel time of zero, i.e., T ((0, 1)) = T ((1, 0)) = {0}. No energy is
consumed along the arc (0, 1), and a vehicle will be fully charged when returning to the artificial depot
0, i.e., β((0, 1), 0, Q) = Q and β((1, 0), 0, b) = Q, for all b ∈ [0, Q].

Example. Figure 1a shows an example with AR = {(1, 5), (3, 1), (3, 4), (5, 2)}, m = 1, Q = 4, and two
possible travel times T (a) = {1, 2} for each a ∈ A. We assume that the SOC function is defined as
β(a, 1, b) = b and β(a, 2, b) = min{Q, b + 3} for charging arcs a ∈ {(3, 1), (3, 4)} and b ∈ B. For the
remaining arcs a ∈ A \ {(3, 1), (3, 4)}, we set β(a, 1, b) = b − 2, for all b ∈ B, b ≥ 2, β(a, 2, b) = b − 1,
for all b ∈ B, b ≥ 1, and β(a, t, b) = −∞ otherwise. Figure 1b visualizes an optimal solution with
total travel time 11 that consists of walk ((0, 1), (1, 5), (5, 2), (2, 3), (3, 4), (4, 2), (2, 3), (3, 1), (1, 0)) where
a travel time of 1 is chosen on arcs (1, 5), (2, 3) (for the second traversal), and (3, 1). A travel time of 2
is chosen on all other arc traversal not adjacent to the artificial depot.

2 Integer programming formulation

As discussed above, eARP instances may contain positive SOC cycles whose traversal can increase a
vehicle’s SOC. One such example is given in Figure 1 where traversing the cycle (2, 3, 4, 2) can induce
an SOC increase of one. Positive SOC cycles and multiple node/arc visits (even by a single vehicle)
increase the difficulty of deriving ILP formulations on the original graph G. This is because it is not
obvious how to track the battery’s SOC with the usual state variables on nodes and arcs in particular
for non-linear SOC functions. Formulations based on node-routing transformations are an alternative
commonly applied to ARPs, see, e.g., Belenguer et al. [10]. These transformations rely on the fact that
deadheading between two consecutively visited required arcs, say (u, v) and (u′, v′) is performed along a
shortest path connecting v to u′. It is easy to observe, however, that this property does not necessarily
hold for the eARP in which an optimal deadheading route has to be selected from a set of Pareto
optimal walks, cf. Bartolini et al. [6] and Section 3.1 for further details. Hence, such a transformation
would result in creating a multi-graph with a potentially exponential number of parallel edges, which
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Figure 2: Energy-indexed graph corresponding to the instance given in Figure 1a. The solution given
in Figure 1b is indicated by bold arcs. Artificial arcs adjacent to 04 are shown by dotted lines, optional
arcs by dashed lines, and arcs corresponding to required arcs by solid lines. Nodes without ingoing or
without outgoing arcs have been removed together with their adjacent arcs.

might not be tractable from a computational perspective. We overcome these difficulties by proposing a
transformation of the eARP to an equivalent problem defined on an energy-indexed graph.

2.1 The Energy-Indexed Graph G
Starting from graph G, we construct the energy-indexed graph G = (V,A) in such a way that its nodes
and arcs encode SOC information, see Definition 1 and Figure 2.

Definition 1. Given an instance of the eARP, the energy-indexed graph G = (V,A) associated with that
instance has node set V = {up : u ∈ V \ {0}, p ∈ B} ∪ {0Q}, and arc set A = {(up, vq) : a = (u, v) ∈
A, p, q ∈ B, and ∃t ∈ T (a) s.t. β(a, t, p) = q}.

To each arc (up, vq) ∈ A, we associate the travel time t ∈ T ((u, v)), such that β((u, v), t, p) = q. By
Auv = {(up, vq) ∈ A} we denote the set of energy-indexed arc copies of arc (u, v) ∈ A. Above definition
of G is based on introducing one copy up of each node u at each possible SOC p ∈ B. Our implementation
is, however, based on a (usually) much smaller graph that only contains nodes that are reachable via an
energy-feasible walk from the artificial depot 0 (see Section 4.1 for details). It is clear that G is notably
larger than G both in terms of the number of nodes and the number of arcs. On the other hand, the
advantage of working on G rather than on G is that it makes explicit the SOC at the nodes as well as the
energy consumption of the traversed arcs. Moreover, as formalized in Lemma 1 (whose proof is given in
Appendix A), by construction any walk on G starting and ending at the depot is battery feasible.

Lemma 1. There is a one-to-one correspondence between the battery feasible walks on G starting and
ending at depot 0 and the walks on G starting and ending at 0Q.

An immediate consequence of Lemma 1 is that the eARP can be solved by finding a set of at most
m walks on G with minimal total travel time such that (i) each walk starts and ends at 0Q, and (ii) at
least one arc of set Auv is traversed for each required arc (u, v) ∈ AR. Thus, the eARP can be seen
as a particular case of the GDRPP defined on G, with required arc subsets Auv, (u, v) ∈ AR, and the
additional condition that the solution contains no more than m walks.
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2.2 ILP formulation on the energy-indexed graph

The ILP formulation exploits the structure of the energy-indexed graph G. It considers the following
sets of decision variables: (i) integer variables Xa,∀a = (up, vq) ∈ A, indicating the number of times arc
(u, v) ∈ A is traversed with SOC level p at node u and travel time t, where q = β((u, v), t, p), and (ii)
binary variables ypuv,∀(u, v) ∈ AR, p ∈ B, that indicate if required arc (u, v) is served with SOC level p
at node u. We use compact notation X(A′) =

∑
a∈A′ Xa for any set of arcs A′ ⊆ A as well as notations

δ+(S) = {(up, vq) ∈ A | up ∈ S} and δ−(S) = {(up, vq) ∈ A | vq ∈ S} for S ⊂ V. Thereby, we omit set
braces when S contains only one node.

min
∑
a∈A

taXa (1a)

s.t. X(δ+(0Q)) ≤ m (1b)

X(Auv) ≥ 1 ∀(u, v) ∈ AR (1c)

X(δ−(up)) = X(δ+(up)) ∀up ∈ V (1d)∑
p∈B

ypuv = 1 ∀(u, v) ∈ AR (1e)

X({(up, vq) ∈ A}) ≥ ypuv ∀(u, v) ∈ AR, p ∈ B (1f)

X(δ−(S)) ≥
∑
up∈S

ypuv ∀(u, v) ∈ AR, S ⊆ V \ {0Q} (1g)

Xa ∈ Z+ ∀a ∈ A (1h)

ypuv ∈ {0, 1} ∀(u, v) ∈ AR, p ∈ B. (1i)

Inequality (1b) ensures that no more than m walks leave the artificial depot 0Q, while constraints (1c)
guarantee that at least one arc from each set of arcs corresponding to a single required arc in G is
traversed. Equations (1d) are flow conservation constraints. Assignment constraints (1e) ensure that
each required arc is served exactly once. Linking inequalities (1f) ensure that if arc (u, v) ∈ AR is served
with an initial SOC of p then some arc (up, vq) ∈ A has to be traversed. Closed subwalks that serve a
required arc but are not connected to the depot are prevented by constraints (1g) together with (1d)-(1f).
Whenever arc (u, v) ∈ AR is served with some initial SOC p, connectivity constraints (1g) ensure the
existence of a walk from 0Q to up, which implies that the service traversal of each required arc must be
reachable from the depot. Constraints (1g) are valid since equations (1e) imply that the right-hand side
is at most one. Note that the feasible domain of formulation (1) contains solutions that, in addition to
the walks connected to 0Q in which the required arcs are served, include closed subwalks disconnected
from the depot that do not serve any required arc. Such solutions with disconnected walks are, however,
clearly sub-optimal since the objective function (1a) minimizes the overall travel times. We also observe
that constraints (1c) can be obtained as a linear combination of (1e) and (1f). We keep them in the
model, however, as in our solution framework not all constraints (1f) are present in the initial formulation
(see Section 4).

Some of the coefficients in the connectivity constraints (1g) can be down-lifted to zero by exploiting
a slightly different interpretation of the serving variables. To this end, a variable ypuv may only be equal
to one if the solution contains a walk in G in which the SOC before the first traversal of (u, v) ∈ AR is
equal to p. Thus, if ypuv = 1 the walk of G connecting 0Q with up must not contain any arc from Auv.
This is formally captured by lifted connectivity constraints (2) in which the coefficients of the arcs from
δ−(S) that must not be used are down-lifted to zero.

X
(
δ−(S) \ Auv

)
≥
∑
up∈S

ypuv ∀(u, v) ∈ AR, S ⊆ V \ {0Q}. (2)

A particular special case of connectivity constraints (1g) arise if set S contains either all copies of a
node in V or no copy at all. That is, for S = V(W ) = {up ∈ V | u ∈ W} with W ⊂ V \ {0} such that
W ∩ {u ∈ V : (u, v) ∈ AR} 6= ∅, connectivity constraint (1g) can be re-written as

X(δ−(V(W ))) ≥ 1 ∀W ⊆ V \ {0} : W ∩ {u ∈ V : (u, v) ∈ AR} 6= ∅. (3)
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These cuts correspond to well-known connectivity constraints in the original graph G and have the benefit
that they can be separated in G instead of the relatively large energy-indexed graph G.

We observe, that formulation (1) can be easily extended to a variant of eARP including (undirected)
demand edges. For each required edge {u, v}, arcs in both directions need to be considered in a cor-
responding energy-indexed graph for each relevant SOC level p ∈ B together with individual serving
variables ybuv and ybvu. Finally, X and y variables for both serving directions need to be included on the
left-hand sides of constraints (1c) and (1e), respectively.

3 Heuristics

We address in the following several efficient ways for constructing feasible routes, which can be used
either in the initial phase of the branch-and-cut algorithm (cf. Section 4), or as stand-alone approaches for
dealing with large-scale instances. All construction and improvement heuristics proposed in Section 3.2
operate on the solution representation presented in Section 3.1.

3.1 Solution representation and decoding

We represent each feasible solution by the sequence of required arcs served by each vehicle, similar
to Vidal [40]. That way, a sequence R = (a1, a2, . . . , ar), aj ∈ AR, j ∈ {1, 2, . . . , r}, defines which
required arcs are served in which order by a particular vehicle. A set of at most m sequences may encode
a feasible solution if each required arc is contained in precisely one sequence. The proof of Theorem 1
(see Appendix A) shows how to identify whether a given sequence of required arcs leads to a feasible
solution or not.

Theorem 1. For a given sequence R = (a1, a2, . . . , ar) of required arcs, checking whether there exists
a feasible walk starting and ending at the depot visiting them in the given order can be performed in
O(r|A||B|) time.

We next develop a labeling algorithm that calculates a walk with an associated sequence of travel
times for a given sequence R = (a1, a2, . . . , ar), aj = (uj , vj) ∈ AR, j = 1, . . . , r, of required arcs
such that the total travel time is minimal. Note that the walk connecting two consecutive required
arcs depends on the SOC after traversing the previous required arc. Thus, it cannot be pre-computed
as resource constrained shortest path with energy as resource and travel times as costs [26]. In each
iteration the algorithm computes a set of labels L[vj ] corresponding to non-dominated walks from the
depot 0 to vj while taking the label set L[vj−1] as input, see Algorithm 1. Each label (t, b,W, T )
is represented by its associated walk W = (a1, a2, . . . , ak), al = (wl−1, wl) with w0 = 0, travel time

sequence T = (t1, t2, . . . , tk), tl ∈ T (al) for l ∈ {1, 2, . . . , k}, total travel time t =
∑k
l=1 t

l, and final
SOC b ∈ B at node wk. A label (t, b,W, T ) is dominated by another label (t′, b′,W ′, T ′) if and only
if both walks end at the same node wk, serve the same partial sequence of required arcs, t ≥ t′, and
b ≤ b′. The algorithm is initialized with label L[v0] = {(0, Q, ∅, ∅)} corresponding to the empty walk
starting and ending at the depot 0 =: v0. In its final iteration, the algorithm extends all non-dominated
walks from L[vr] to the depot 0 =: ur+1 = vr+1, and returns the label with smallest travel time, i.e.,
(t∗, b∗,W∗, T ∗) ∈ argmin(t,b,W,T )∈L[vr+1]t, or states infeasibility in case L[vr+1] = ∅. Algorithm 1 uses
operator ◦ to append an arc to a walk and a travel time to a sequence of travel times. Operator ⊕ is used
for possibly inserting a new label: If the label is non-dominated, it is inserted and all labels dominated
by it are removed. This can be done in time linear in the number of labels for one particular node.
Parameter tmax indicates the maximum travel time and is used to restrict the label extension. Observe
that an upper bound (we use the travel time of the currently best known solution) can be tightened to
tmax−

∑r
k=j minT (ak) in iteration j by assuming that each required arc of sequence R will be traversed

with the minimum possible travel time.

3.2 Construction and improvement heuristics

We propose three different construction heuristics all of which represent solutions as sequences of required
arcs and use the algorithm described in Section 3.1 for their decoding and evaluation.
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Algorithm 1: ExtendWalks(L[vj−1], (uj , vj), tmax)

Input: labels L[vj−1] corresponding to non-dominated walks from 0 to vj−1, subsequent
required arc (uj , vj) ∈ AR, travel time limit tmax

Output: labels L[vj ] corresponding to non-dominated walks from 0 to vj

1 L = L[vj−1]
2 foreach unprocessed label (t, b,W, T ) ∈ L do // compute labels to uj

3 foreach a ∈ δ+(u) and t′ ∈ T (a) do // node u denotes the final node in walk W
4 if t+ t′ ≤ tmax and β(a, t′, b) ∈ B then L = L ⊕ (t+ t′, β(a, t′, b),W ◦ a, T ◦ t′)

5 if (uj , vj) = (0, 0) then // return back to the depot

6 L[vj ] = {(t, b,W, T ) ∈ L | W = (a1, a2, . . . , (w, uj))}
7 else // extend all labels at uj along aj = (uj , vj)
8 L[uj ] = {(t, b,W, T ) ∈ L | W = (a1, a2, . . . , (w, uj))}
9 tmax = tmax + mint∈T (aj) t

10 foreach (t, b,W, T ) ∈ L[uj ] and t′ ∈ T (aj) do
11 if t+ t′ ≤ tmax and β(aj , t′, b) ∈ B then
12 L[vj ] = L[vj ]⊕ (t+ t′, β(aj , t′, b),W ◦ aj , T ◦ t′)

13 return L[vj ]

Heuristic SM. This heuristic is inspired by the savings heuristic for the capacitated VRP [13] and
the Merge heuristic for the capacitated ARP [21]. Starting with a set of sequences where each contains a
single required arc, the heuristic iteratively concatenates two sequences while preserving feasibility with
respect to the battery capacity. A best improvement strategy that selects and merges two sequences
maximizing the resulting decrease of the overall travel time is used in each iteration. Ties are broken by
choosing the two sequences that result in the longest sequence to prioritize the building of a few long
routes. The heuristic terminates when the number of sequences is not larger than the number of vehicles
and any further merge would increase the travel time. Merges that increase the objective value may be
performed if no time-decreasing merge exists and the intermediate solution still contains more than m
sequences.

Heuristic RC. This heuristic follows a route-first-cluster-second approach [8]. It first computes a
giant route of minimal total travel time serving all required arcs but ignoring the battery capacity. We
observe that an optimal solution to a relaxation of the eARP that neglects the battery constraints can be
computed by solving a DRPP instance on G in which only the fastest travel time from T (a) is considered
for each arc a ∈ A. An optimal solution to the DRPP is obtained with a branch-and-cut algorithm based
on a natural-space formulation using connectivity cuts that ensure a directed path from the depot to
every required arc and vice versa [5]. This approach is feasible since the DRPP using only the lowest
travel times can be solved very fast even for the most difficult eARP instances considered in our study.
An optimal DRPP solution also provides a valid lower bound on the optimal value of the associated
eARP instance. Moreover, if the obtained DRPP solution is battery feasible it is an optimal solution to
the eARP instance as well. In general, however, the giant route needs to be split into multiple routes.
For this, the visiting sequence of all required arcs is derived from the giant route before splitting the
latter in an optimal way using a dynamic program similar to the one proposed for the capacitated ARP
in Lacomme et al. [24]. For each pair k, l ∈ {1, 2, . . . , |AR|}, k < l, the optimal walk for the subsequence
(ak, ak+1, . . . , al) is computed by the labeling algorithm described in Section 3.1. The combination of the
best set of sequences for (a1, a2, . . . , ak−1) together with the optimal walk for (ak, ak+1, . . . , al) is stored
as a new best solution covering all required arcs up to al in case it is better (i.e., faster) than the so-far
best set of walks covering these arcs. The merge heuristic SM is finally applied to its result in case the
number of derived routes exceeds the given number of vehicles m. Since each split sequence of required
arcs is optimally decoded, Corollary 1 follows from arguments analogous to those used in Lacomme et al.
[24] and Ulusoy [39] for the capacitated ARP.

Corollary 1. The set of walks obtained by the split algorithm is optimal for the given sequence of required

9



arcs if the number of obtained routes does not exceed m.

Heuristic CM. This heuristic combines ideas from the previous two heuristics. First, the weakly
connected components of the graph induced by all required arcs are determined. Then, heuristic RC is
applied to each of these components. The resulting set of sequences is then used as initial solution to
heuristic SM (rather than routes containing only a single required arc).

Improvement. Solutions computed by any of these three heuristics are subsequently improved by a
local search algorithm that moves a single required arc to another position (either within its sequence
or to an arbitrary position of any other sequence). A best improvement strategy is used and the local
search algorithm stops if there is no move that improves the objective function value.

Acceleration techniques. The decoding of sequences of served arcs may induce long running times
in case many Pareto-optimal walks exist. Three techniques addressing this issue are considered in our
algorithms: (i) an upper bound on a walk’s travel time, (ii) a limit on the number of kept labels per
node, and (iii) a sequence archive to re-use already evaluated labels.

As detailed in Section 3.1, an upper bound tmax on the travel time of a walk is used to limit the
extension of labels. We set tmax equal to the objective value of the best solution found so far (if available).
To further limit the number of labels, we only keep the best K labels for each node with respect to the
walk’s travel time. With this modification we significantly reduce the running times, but also lose the
optimality property of the labeling algorithm. Our experimental results show that the decrease in solution
quality is only moderate and often negligible even when using comparably small values of K ≤ 20.

If two sequences of required arcs have a common prefix the set of Pareto-optimal walks is identical up
to the point where the sequences diverge. Thus, we accelerate our heuristic algorithms by re-using results
from previous sequence decodings. Sets of Pareto-optimal walks for past sequences are efficiently stored
using a solution archive based on a trie structure in which each node corresponds to a single required arc
and its children are associated with succeeding required arcs in already considered sequences, see Raidl
and Hu [36], Ruthmair and Raidl [37]. This data structure allows to efficiently insert sets for newly
computed sequences and find the longest already computed prefix for a given sequence. Thus, the
labeling algorithm described in Section 3.1 can skip the required arcs contained in the found prefix and
hot-starts from the set of Pareto-optimal walks stored for this prefix.

4 Algorithmic framework

All formulations and algorithms described in the previous sections have been implemented in C++
using the branch-and-cut framework IBM ILOG CPLEX 12.9 with default settings. In this section we
discuss aspects that influence the results of our computational study. These include the generation of
the energy-indexed graph, rules for reducing its size, and algorithmic details of the separation methods
used for dynamically adding violated inequalities as cutting planes.

4.1 Energy-indexed graph generation

As mentioned in Section 2, creating the energy-indexed graph G by simply replicating all nodes and arcs
for all possible SOCs in B would induce a huge graph containing many energy-indexed nodes or arcs
that cannot be obtained in an eARP solution. Instead, we incrementally create G by only considering
node-SOC pairs reachable in an energy-feasible walk starting at the depot. We maintain a queue of
energy-indexed nodes initially containing only 0Q. For each node in the queue we add one energy-
indexed arc for each outgoing arc and travel time. If some end node of a new arc does not exist yet
we add it to G and the queue. At the end the energy-indexed graph is reduced by removing nodes and
arcs that cannot appear in an optimal solution. The following three rules are applied repeatedly until
no further reductions can be made: (i) Nodes without outgoing arcs cannot be part of a closed walk and
are thus removed together with all incoming arcs. (ii) Cycles containing only non-required arcs whose
traversal decreases the SOC cannot be part of an optimal solution. Some two-cycles of this kind can
be eliminated with the following rule: Let (u, v), (v, u) ∈ A \ AR. Arc (up, vq) ∈ A can be removed if
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(vq, up′) ∈ A is the only arc going out of vq and p′ ≤ p, or if (vq′ , up) ∈ A is the only arc going into up
and q′ ≥ q. (iii) Nodes without incoming arcs are removed together with all outgoing arcs.

4.2 Separation of valid inequalities

Preliminary experiments indicated computational advantages of introducing integer variables xuv ∈ Z+

for all arcs (u, v) ∈ A, flow conservation constraints defined on these variables similar to (1d) for each
u ∈ V , and linking constraints xuv = X(Auv). While these variables (and constraints) are clearly
redundant, branching on them may improve the balance of the resulting branch-and-cut trees. We first
separate constraints (3) rewritten with x variables in original graph G. If no such constraints are violated
in the current iteration, constraints (1g) or their stronger variants (2) are separated. The latter two are
only added if the cut violation ratio between left-hand and right-hand side values is smaller than 0.9.
This strategy turned out to be a good compromise in preliminary experiments to avoid stalling and
separation of shallow cuts at fractional points and still improve the LP bounds. Based on these results,
we also decided to separate the energy-indexed graph cuts for fractional solutions only at the root node
of the branch-and-cut tree with a limit of at most 100 inequalities in each iteration. Next, we describe
how we identify violated inequalities (1f), (1g), (2), and (3) for fractional solutions. Let x̄, X̄, and ȳ,
denote the variable values of the current LP relaxation.

Separation of constraints (1g) and (2). Using equations (1e) we can rewrite constraints (1g) as

X(δ−(S)) +
∑
up /∈S

ypuv ≥ 1 ∀(u, v) ∈ AR, S ⊆ V \ {0Q}. (4)

We find a minimum cut for a given required arc (u, v) ∈ AR by introducing an artificial target node t and
connecting all sources of the arcs Auv to t, i.e., we add arcs {(up, t) : ∃(up, vq) ∈ Auv}. The capacities
of arcs (up, t) are set to ȳpuv and for all other arcs in A to their X̄ value. Any 0Q − t cut in this support
graph whose value is less than one induces a violated inequality (4). To separate the lifted variant (2)
for a given arc (u, v) ∈ AR, the only difference to the procedure above is that the capacity of all its
energy-indexed copies Auv are set to zero.

Since the number of linking constraints (1f) connecting y and X variables can be rather high, we
separate them dynamically only for those y variables contained in some violated cut (1g) or (2).

Separation of constraints (3). Violated connectivity constraints (3) can be identified in the original
graph G. For each node u ∈ V that is a source of some required arc, i.e., δ+(u) ∩AR 6= ∅, we use values
x̄ as arc capacities and compute a maximum flow in G from node 0 to node u. If the capacity of a
minimum cut is below one we found a violated inequality (3).

To obtain a minimum cut of smallest cardinality (leading to a sparser inequality) we add a small
value, i.e., 10−5, to all arc capacities, cf. Fischetti et al. [17]. To further break ties we choose a cut that
has a smallest set S. For integer solutions inequalities (1f), (1g), (2), and (3) are separated efficiently
using breadth-first search. For (1g) and (2), we only add a single violated inequality (plus linking
constraints (1f) if applicable) to cut-off infeasible solutions.

5 Experimental results

In this section we describe and motivate our test instances, and evaluate the performance of our algo-
rithms. Finally, we perform experiments with varying battery sizes and network properties to derive
managerial insights and recommendations. Each experiment has been performed on a single core of an
Intel Xeon E5-2670v2 machine with 2.5 GHz with a memory limit of 8 GB.

Due to the lack of available data for other arc routing applications with electric devices such as, e.g.,
inspection robots, we generate our benchmark instances focusing on applications in transportation and
logistics.
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5.1 Instances

For constructing realistic benchmark instances we consider long-range arc routing applications on primary
streets, e.g., highways, in which the vehicle’s load capacity can be ignored. The street networks are
obtained by using the arc routing instance generator OARBench [28]. We chose three cities in Europe—
Amsterdam (A), Paris (P), Vienna (V)—and selected all primary streets within a predefined rectangle
around the center (Amsterdam: 16.4× 17km, Paris: 13.5× 12km, Vienna: 18.5× 18.5km). Arc lengths
are set to Euclidean distances. The resulting large-scale networks with thousands of nodes and arcs
are preprocessed to obtain manageable test instances still capturing the city structure: We repeatedly
remove all nodes with no outgoing or incoming arcs and all self-loops. In case of parallel arcs we keep
the longest one. Nodes that have exactly two neighbors are removed and the incident arcs are merged.
Similarly, a node with a single incoming (outgoing) arc is removed and the arc is merged to all outgoing
(incoming) arcs. Finally, we merge nodes that are within a Euclidean distance of 500, 300, or 100
meters, resulting in three graphs with different sizes for each city. The depot is set near a train station
or public service garage. For each of the nine street networks we define two different sets of required
arcs, randomly selecting 10% and 50% of all arcs, respectively. Instance names consist of the city’s first
letter and |V |-|A|-|AR|, e.g., A-31-105-8.

We compute the vehicle’s energy consumption as in Asamer et al. [4], i.e., by reformulation we obtain
for travel time t and speed v, e(t, v) = t

(
γ1v + γ2v

3 + γ3
)
, where γ1, γ2, γ3 are vehicle-specific constants:

Based on the specifications of an Eforce EF18 electric truck (www.eforce.ch/products/ef18, 2018-11-
20), which is based on an IVECO Stralis, a total constant weight of 15 tons, 3 kW power for auxiliary
components (heating, cooling, etc.), and zero street gradients, we obtain γ1 = g·Cr·m

η = 9.81·0.008·15000
0.97 ≈

1213.61, γ2 = Cw·AF·ρ
2·η = 0.8·9.69·1.165

2·0.97 ≈ 4.66, and γ3 = P0 = 3000, where g is gravity, Cr rolling

resistance, m weight, η engine efficiency, Cw drag coefficient, AF frontal surface area, ρ air density (200m
above sea level, temperature 20◦C), and P0 auxiliary power. For a fixed speed the energy consumption is
linear in t, i.e., e(t, v) = ê(v)t with ê(v) := γ1v+γ2v

3+γ3. We can derive the speed to drive some distance
d that leads to the minimal energy consumption by replacing t with d/v, i.e., v∗ = 3

√
γ3/(2γ2) ≈ 24.7

km/h. With this speed the truck needs about 1870 kWs ≈ 0.52 kWh per kilometer. To account for
inaccuracies in the parameters and other uncertainties, SOC values are underestimated by rounding
down to the nearest 1000 kWs. We consider four different battery sizes, i.e., Q ∈ {25, 37.5, 50, 75} (in
kWh) while the Eforce EF18 can use batteries with up to 630 kWh. Since the battery is one of the major
factors in the truck acquisition costs and there are environmental concerns related to its production and
recycling, we want to keep it as small as possible and it turned out that already small sizes are sufficient
in our cases, see Section 5.4.

Assuming a maximal charging rate r, we use a piece-wise linear charging function c(t, b) depending
on travel time t and initial SOC level b accounting for the battery’s reduced capability of absorbing
energy when the SOC is high: From 0% to 85% SOC the battery can be charged with the maximal rate
of r1 := r, from 85% to 95% the rate halves to r2 := r

2 , and from 95% to 100% the rate reduces to
a sixth, i.e., r3 := r

6 , cf. Montoya et al. [31]. For an empty battery, i.e., b = 0, and charging time t,
the SOC after charging—assuming that no energy is consumed while charging—is defined by function
ĉ(t) = min{r1t, 0.85Q + r2(t − t1), 0.95Q + r3(t − t2), Q}, where t1 = 0.85Q

r1
and t2 = t1 + 0.1Q

r2
are

the first two breakpoints of the piece-wise linear, concave, and non-decreasing charging function. For
positive SOC levels b > 0 function ĉ(t) is shifted by ĉ−1(b) to the left. Thus, we apply the transformation
from Baum et al. [7] to a one-dimensional function, i.e., c(t, b) = ĉ(t + ĉ−1(b)). Note that the inverse
ĉ−1(b) is uniquely defined for b ∈ [0, Q[ while for b = Q we use the minimum time to obtain a full battery,
which is the third breakpoint t3 = t2 + 0.05Q

r3
.

We did not consider that driving along a dynamic charging arc also simultaneously consumes energy.
Since the battery itself can either be charged or discharged at a time, a battery management unit
determines the net energy rate r−ê(v) in such a situation and decides whether to re-charge (if r−ê(v) > 0)
or discharge (if r−ê(v) < 0) the battery. Thus, if r−ê(v) > 0 we adapt the charging rates used in function
ĉ(t) to speed-dependent values r1(v) := r − ê(v), r2(v) := min{r − ê(v), r2}, r3(v) := min{r − ê(v), r6}.
Note that r1(v) > 0 implies r2(v) > 0 and r3(v) > 0.

Dynamic charging facilities are installed on at most pc|A| arcs, restricted only to the set of required
arcs, with pc = 0.1 if not stated otherwise. The first min{pc|A|, |AR|} required arcs (in the order of
appearance in the instance) are equipped with dynamic chargers with a rate of r = 22 kW throughout
the full distance da of arc a ∈ A. In our default setting, we consider two travel times on non-charging
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Figure 3: Gaps of heuristic solutions compared to best branch-and-cut solutions.

arcs based on speeds of 40 and 60 km/h, which we assume to be constant on the whole arc. For charging
arcs we add a third option to allow longer re-charging, i.e., 20 km/h. Note that recent dynamic charging
technology allows to re-charge with 22 kW at any of these speeds [11]. Finally, the SOC function β(a, t, b)
on arc a ∈ A, for travel time t, and initial SOC b is defined as

β(a, t, b) =

 c(t, b) if a is a charging arc and r1(dat ) > 0,

b+ r1(dat )t if r1(dat ) ≤ 0 and b+ r1(dat )t ≥ 0,
−∞ otherwise,

(5)

where the first case describes the battery charging situation with a positive net rate, the second case
discharges the battery based on a non-positive net rate (note that r = 0 on non-charging arcs), and the
third case accounts for infeasibility because of a too low initial SOC b.

5.2 Performance of heuristics and the branch-and-cut algorithm

In this section we report the performance of the heuristics given in Section 3 and the exact solution
framework described in Section 4 on our set of benchmark instances. We start by evaluating the heuristics
and analyze their solution quality in function of the number of labels K kept per node in the labeling
algorithm (see the paragraph on acceleration techniques in Section 3). The three construction heuristics
SM, RC, and CM, followed by the local search phase are applied to the city instances with a time limit
of one hour.

Figure 3 depicts cumulative gaps of the heuristics for values of K ∈ {1, 5, 20,∞}, while Figure 4 shows
their cumulative runtimes in seconds. Heuristic solution quality is measured as the relative deviation of
the travel time with respect to the best solution found by one of the branch-and-cut (BC) approaches.
A point with coordinates (x, y) in these charts indicates that for y% of instances the obtained deviation
from the best BC solution is ≤ x%. Negative deviations show that the BC approach is not able to
sufficiently improve the initial heuristic solution (for the BC methods we only use heuristic RC with
K = 20 without local search). A closer look into the results, see Appendix B, reveals that negative
gaps are obtained for the cases where the energy-indexed graph formulation is too large to be handled
efficiently.

We recall that higher values of K in general allow to explore more solutions (especially for low battery
sizes, Q = 25), since more labels with higher SOC (and longer travel times) are kept for each node. On
the contrary, with K being too low (K ≤ 5), no solution could be found in some cases. However, Figure 3
clearly indicates that higher values of K do not necessarily imply a better solution quality. This can
be explained by the runtime increase for growing values of K due to the additional effort in sequence
decoding (see Section 3.1). This sometimes leads to deviations of more than 100% when the time limit
is reached before finding reasonably good solutions. The best trade-off is achieved for K = 20, which we
choose as a default setting for the rest of the experiments.

More details from comparing the heuristics can be found in Appendix B. From these runs we observe
that the number of weakly connected components induced by required arcs (denoted by C in the second
column of Table 3) seems to be a distinguishable factor for choosing the construction heuristic: The
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Figure 4: Solution times of heuristics.

route-first-cluster-second heuristic RC often obtains better solutions if the number of components is
rather high, i.e., when the relative number of required arcs is low. The initial giant route obtained
by solving the DRPP seems to efficiently capture the component structure. Surprisingly, CM mostly
performs worse than RC for these cases even though it explicitly exploits the component structure of the
graph. Probably, the merge phase after separately considering each component is counterproductive here.
On the other hand, the merge-based heuristic SM seems to be more appropriate for difficult instances
with a high number of required arcs (with few components).

RC is on average faster than the other candidates, mainly because both solving the DRPP and
splitting the giant route can be done quite efficiently while evaluating the merge options in SM and also
CM takes a considerable amount of time because of the decoding procedure.

The usage of the archive produces significant savings of computing time due to the high efforts in
decoding the sequences of required arcs. Moreover, heuristics SM and RC with label limit K = 20
together with the archive seem to provide a good compromise between solution quality and runtime.
Details are discussed in Appendix B.

We now turn our attention to the BC methods and compare the following two settings:

• Variant BC uses the first visit variables y, adds (1e) and (1i) statically to the formulation and
separates constraints (1f) and lifted inequalities (2) dynamically for integer solutions only.

• Variant BC+ is an extension of BC by separating fractional points as well and adding inequalities (2)
to strengthen the dual bound of the LP relaxation (only) at the root node.

Both variants use the base formulation (1a)-(1d) together with (1h), and separate connectivity cuts (3)
on the original graph G both for integer and fractional solutions. An initial feasible solution is generated
by heuristic RC with label limit K = 20, enabled solution archive, and disabled local search and handed
over to CPLEX as a first incumbent solution (if available).

Figure 5 compares cumulative gaps and computing times in seconds of variants BC and BC+. More
detailed results are given in Table 1 that reports for each instance and for three possible battery capacities
Q ∈ {25, 50, 75} the following values: the best lower bound (LB) and the best upper bound (UB) on the
optimal total travel time in seconds found by the two variants of the BC algorithm. We also report the
total runtime in seconds, the number of separated cuts, and the total number of branching nodes. For
each of the three heuristics (with default setting K = 20, enabled archive, and local search), we report
the relative gap to the best upper bound UB. The runtime of each test run is limited to two hours and
we mark it with “TL” when the time limit is reached without proving optimality. Entries in boldface
indicate the best results for each row and block of columns.

The results indicate that it is much harder to solve instances with a high number of required arcs,
especially for larger batteries. Smaller battery sizes B usually lead to smaller ILP formulations but also
to worse LP relaxation bounds, indicated by the higher number of branch-and-bound nodes. When the
battery limits increase the energy-indexed graphs and the corresponding formulations quickly get larger
as well as the time for solving the associated LP relaxations. Although the LP bounds are quite tight
in these cases, the BCs often exceed the time limit ending up with a few processed branch-and-bound
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Figure 5: Final optimality gaps and computing times for branch-and-cut approaches.

nodes only. In general, the base energy-indexed graph formulations with connectivity cuts (3) but with-
out inequalities (2) are already quite strong, as also observed in Gouveia et al. [22] for layered graph
formulations for other problems. The optimality gap after two hours is usually below 10% except for
the largest instances with many required arcs. In these cases the dual bounds are quite good but the
primal bounds are mostly far from the optimum. This is also confirmed by the negative values obtained
in the heuristics columns, which are particularly present for Q ∈ {50, 75}. We also investigated adap-
tations of our heuristics applied in branch-and-bound nodes using the current LP solution as guideline.
Unfortunately, this turned out to spend too much time without significantly improving the final results.

When comparing BC and BC+, we observe that the major difference is the number of branching
nodes: While both settings seem to achieve similar quality of solutions, BC+ stays at the root node in
the majority of the cases, whereas BC creates larger branching trees. This clearly indicates a typical
trade-off between branching and separation: separation of fractional points is computationally more
demanding, but tends to achieve better lower bounds and smaller branching trees.

Finally, we point out that there are no infeasible instances in this set but with different parameters
infeasibility due to the limited battery size might occur. Those cases can often be detected already early
when building the energy-indexed graph: If a source node of some required arc cannot be reached with
any feasible SOC, there is no feasible solution, cf. Section 3.1. On the other hand, when the battery limit
is not restricting optimality can be proven by the initial RC heuristic: If the optimal DRPP solution is
feasible for the eARP, the solution is optimal.

5.3 How precise is the energy-indexed model?

By constructing the energy-indexed graph, we discretize the SOC function and thus reduce the potential
SOC levels. A very fine-grained SOC discretization could lead to longer computing times due to the
expansion of the energy-indexed graph. On the other hand, a coarse-grained discretization together with
the rounding-down of the SOC might lead to an overestimation of the optimal travel times. In this
section we look for the answers to the following questions: 1) How much do we overestimate the travel
times by working on the energy-indexed graph? 2) Do we sacrifice the quality of solutions by working
on a coarse-grained discretization? and 3) What is the level of granularity that gives us a tractable ILP
model without sacrificing too much solution quality?

Recall that in our default experiments we round down the SOC after traversing an arc to the nearest
D = 1000 kWs. This may allow us to partially account for the inherent uncertainty in the input
data, but it may also lead to overestimated total travel times (the rounding effect) or missed optimal
solutions (the discretization effect). In the following study, we consider three different discretization
levels, D ∈ {500, 1000, 2000} in kWs, on instances for which optimal solutions can be obtained with our
exact method with a time limit of one day. An optimal route, i.e., a collection of m walks, W1, . . . ,Wm,
obtained with the discretization level D is only an approximation of the optimal route, so we re-evaluate
each Wi using a more refined discretization level D′ ∈ {1, 100, 500} in two possible ways:

• Fixed sequence of traversed arcs, R(D,D′): We fix the walks W1, . . . ,Wm, obtained with D and
re-calculate an optimal sequence of travel times with respect to the discretization level D′. To this
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end, for each walkWi = (a1, a2, . . . , ak), aj = (uj−1, uj) ∈ A, 1 ≤ j ≤ k, the dynamic programming
recursion τ(uj , b) = mint∈T (aj),b′∈B: β(aj ,t,b′)=b{τ(uj−1, b′) + t}, ∀j = 1, . . . , k,∀b ∈ B, is used to
calculate the minimum travel time τ(uj , b) for arriving at node uj with SOC b. We initialize
τ(u0, Q) = 0 and τ(u0, b) = ∞ for all b 6= Q. Observe that the travel time obtained with D is an
upper bound for the travel time based on the refined discretization level D′.

• Fixed sequence of served arcs, S(D,D′): From the walks W1, . . . ,Wm obtained with D, we derive
the sequences of served required arcs R1, . . . ,Rm by assuming that the earliest visit of a required
arc over all m routes defines its service (ties are broken by lower vehicle index). Then, we apply
the decoding algorithm (with no limit on the number of labels) based on discretization level D′ for
each sequence and re-calculate the total travel time.

If OPT (D) denotes the optimal travel time with respect to discretization level D, and D′ ≤ D is a more
refined discretization level, then we have OPT (D) ≥ R(D,D′) ≥ S(D,D′) ≥ OPT (D′).

Table 2 compares the optimal travel times obtained with D ∈ {500, 1000, 2000} with the re-
evaluated travel times for D′ ∈ {1, 100, 500}. We report the relative gaps of OPT (D), S(D,D′),
and R(D,D′) with respect to reference value OPT (500), denoted by OPT g(D), Sg(D,D

′), and

Rg(D,D
′), respectively, calculated as OPT g(D) = OPT(D)−OPT(500)

OPT(500) , Sg(D,D
′) = S(D,D′)−OPT(500)

OPT(500) ,

Rg(D,D
′) = R(D,D′)−OPT(500)

OPT(500) . In column t[s] we provide the computing times for calculating OPT (D).

While the method for evaluating R(D,D′) is extremely fast for all instances and values D′ (it requires
less than one second), the decoding algorithm (which is applied with no upper limit on the number of
labels) needed for the calculation of S(D,D′), see Section 3.1, can take a significant amount of time,
cf. Section 5.2, which is why Sg(D, 1) is left out from the table.

The values provided in column OPT g indicate the relative increase of the calculated travel time when
coarsening the level of discretization from 500, to 1000, respectively 2000. We observe that there is an
over-estimation of the total travel time caused by discretization: it is higher for the smaller battery
(Q = 25) and ranges from 7% to 17%. However, for the larger battery (Q = 50) it is less pronounced
and varies between 0.4% and 12.6%.

The next question is related to the robustness of the optimal solution found on the energy-indexed
graph: When comparing the total travel times of two solutions obtained by D = 500 and D = 1000,
we observe that optimality is not sacrificed when less granularity is applied, i.e., in most of the cases,
the relative gaps Sg and Rg are the same. By moving towards a more coarse-grained discretization
(D = 2000) we notice that the quality of the obtained solution deteriorates.

It is interesting to see that re-evaluating the travel times using method S rarely leads to better
solutions than method R indicating that the walks usually do not change after applying method S. Only
for instances A-58-168-15 and A-84-220-20, battery size Q = 25, and discretization level D = 2000, we
can observe a slight improvement when using method S.

We conclude that D = 1000 leads to reasonable runtimes and to negligible quality losses compared to
D = 500. If more accurate information on the actual energy consumption is available, one can efficiently
re-evaluate the solutions using method R(D,D′) with very low values for D′.

5.4 What are the costs of reduced battery capacities?

The battery is a major part of the vehicle acquisition costs and there are environmental concerns in its
production and recycling. Thus, reducing its capacity to a reasonable size customized to a particular
application is highly desired. Smaller batteries may be facilitated by dynamic charging along the arcs,
which eliminates waiting times at stations. Hence, one may ask whether the increase of the total travel
time arising from equipping vehicles with batteries having comparably small capacity can be sufficiently
compensated by existing dynamic charging infrastructure. Related to that, one may wonder whether
small batteries or sparse charging infrastructure lead to solutions in which additional cycles are driven
only for re-charging the battery, cf. Section 1.2. To obtain insights into these aspects, we analyze the
obtained optimal solutions for different battery sizes and relative amounts of dynamic charging arcs.

Figure 6 compares optimal solutions for three exemplary instances, different battery sizes Q ∈
{25, 37.5, 50}, and different charging infrastructure, obtained with the default discretization level of
1000 kWs and re-evaluated with method R, see Section 5.3, based on a more fine-grained discretization
of 1 kWs. We report the relative deviations (R(1000, 1)−OPTD)/OPTD (in percent) from the optimal
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Figure 6: Solution comparison for different battery sizes and numbers of charging facilities.

DRPP solution with travel time OPTD, which can be interpreted as driving with combustion engine
vehicles without range limit (resulting in a single route). These deviations are always non-negative, as
the DRPP solution is naturally a lower bound for the eARP solution. We investigate three scenarios:
There are no charging facilities at all (except at the depot), with dynamic charging equipment installed
on pc = 5% of the arcs (restricted to the set of required arcs), and with the default setting of 10%
charging arcs, see Section 5.1. The values above the bars in Figure 6 present the number of vehicles used
in the obtained solution.

We first observe that only very few of the optimal solutions obtained for these settings contain cycles
without required arcs that are driven for re-charging the battery. In fact, only in 2 (instance V) cases (of
162) with the smallest battery capacity 25 kWh such re-charging cycles appeared in an optimal solution.

Next, we study the effect of the battery capacity on the increase of travel times, compared to a fleet
with combustion engines. As shown in Figure 6, too small batteries without arc charging infrastructure
may not even result in feasible routes. However, with charging infrastructure available (pc = 10%), even
with the smallest batteries the relative increase of the travel times is rather moderate and ranges between
25.4% and 60%. These numbers significantly drop down by increasing the battery capacity, improving
the infrastructure, or both. In the most optimistic scenario we tested (Q = 50 kWh, pc = 10%), the
increase of the total travel time is almost negligible, and ranges from 3.5% (instance P) to 13% (instance
V).

We also observe that possible savings in travel times (compared to the nominal travel times obtained
with the smallest battery and no charging infrastructure) are directly correlated with the number of
routes. We do not limit the number of vehicles in our tests to see how optimal solutions are structured,
which means that the fleet size is implicitly optimized in our models. So, if a larger battery or a better
infrastructure allows to reduce the fleet size, then the savings can be very high. For example, the savings
are as big as 60% (for instance P with Q = 25) when more charging arcs are available. Similarly, keeping
the same infrastructure (e.g., pc = 10%) and using a slightly larger battery (Q = 37.5) can lead to
savings of up to 75% of the travel time (cf. instance A).

6 Conclusions

In this article we proposed an arc routing problem with a fleet of electric vehicles, where charging of
vehicles is possible at the depot or along some dedicated arcs of the network. Non-linear charging
functions and multiple options for traversing arcs (considering different speeds or charging options) are
discretized and modeled in an energy-indexed graph. A branch-and-cut framework has been developed to
solve challenging and realistic instances to (near-)optimality. This framework is built starting from a new
ILP formulation and some families of valid inequalities. We propose to encode solutions as sequences of
required arcs, study the computational complexity of verifying their feasibility, and introduce a labeling
algorithm for solution decoding. Three heuristics that exploit the solution encoding techniques have
been integrated in this framework.
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Our computational results have shown that this new exact solution framework based on the concept
of energy-indexed graphs is capable of solving sparse instances with hundreds of arcs to optimality.
Gaps between lower and upper bounds were significantly reduced thanks to the tight LP bounds of the
mathematical formulation and the integration of heuristics. The computational efficiency of the latter
ones was improved by decoding and solution tracking mechanisms.

Our results also highlight the trade-off between investment costs for the charging infrastructure and
the potential increase of travel times due to limited battery range. These findings naturally lead to
other interesting optimization problems related to strategic decisions such as network design of charging
infrastructure or simultaneous optimization of battery size and charging infrastructure. The further
study of such optimization problems and the development of corresponding decision-support tools can
help with the adoption of dynamic charging technology in passenger and cargo transportation.
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A Proofs

Proof (Lemma 1). Let W = (a1, a2, . . . , ak), aj = (uj−1, uj) ∈ A, 1 ≤ j ≤ k, u0 = uk = 0, be a battery
feasible walk in G and T = (t1, t2, . . . , tk), tj ∈ T (aj), 1 ≤ j ≤ k, be the associated travel times. For
each j, 1 ≤ j < k, subwalk (a1, a2, . . . , aj) is battery feasible with a (final) SOC q ∈ B. The definition
of G implies that (uj−1p , ujq) ∈ A where q = β(aj , tj , p). Consequently, a walk in G corresponding to W
exists. The result follows from observing that, by construction, every walk in G is battery feasible and
associated with its corresponding sequence of travel times.

Proof (Theorem 1). Starting from the depot, we search for a walk that results in the highest possible
SOC at the source node of a1. To this end, it is sufficient to consider the travel time t̄(a) ∈ T (a) that
consumes the least energy for each arc a ∈ A. The labeling algorithm starts with SOC Q at the depot
while the SOC labels at all other nodes are set to −∞. Then, we update the labels of all neighbors
v on outgoing arcs a = (0, v) according to β(a, t̄(a), Q). The labels of all nodes in the graph are then
iteratively updated as long as a label with higher SOC than the current one is obtained. That way,
O(|A||B|) time is needed to find out whether a feasible walk between depot 0 and the source node of arc
a1 exists. If this is the case, the labeling returns the highest possible SOC b1 for the source node of a1.
The SOC label at the target node of a1 is then set to β(a1, t̄(a1), b1) and the process is repeated until
all required arcs in R are processed and the final walk to the depot is found. If the resulting SOC at
any of the arcs in R or at the depot is −∞, the sequence does not admit a feasible walk, otherwise the
sequence R is feasible.

B Heuristic results

In Table 3 we compare the algorithmic performance of our heuristic methods for the eARP from Section 3.
The three construction heuristics SM, RC, and CM, including local search are applied to the city instances
with a time limit of one hour and a memory limit of 8 GB. The quality of some heuristic solution
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Figure 7: Solution times of heuristics with solution archive relative to variants without archive.

is measured as the relative travel time deviation to the best solution found by the BC approaches
in Section 5.2. Dashes “-” denote the cases where no feasible solution has been found throughout the
search process within the time limit.

Additionally, we measure the speedup factor obtained when using the solution archive by dividing
the running time tnoA without archive by the running time tA when using it. If tnoA reaches the time
limit of one hour the corresponding speedup value is a lower bound, while we use a dash “-” to denote
the cases where tA exceeds the time limit. Note that as soon as 90% of the memory limit is occupied no
further sequences are stored in the archive to ensure the memory requirements.

Figure 7 depicts cumulative runtimes of the three heuristics when the solution archive is used. Run-
times are given as percentage of the runtime of the same setting without archive. From these charts we
can observe significant speedups achieved by using the archive, sometimes even by an order of magnitude.
In some rare cases the overhead of managing the archive leads to a slower running time (> 100%). The
speedup is on average higher for larger battery sizes for which there is an increased effort for sequence
decoding since more feasible labels can be generated. The results also show that RC and CM benefit
more from the archive. The reason is that when splitting the giant route the sequences are iteratively
extended at the end allowing to re-use the labels stored in the archive from previous iterations.
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Table 1: Comparison of branch-and-cut approaches and heuristics (best values per line are marked bold)

LB UB runtime [s] #cuts #BB nodes UB [%] (K = 20)
city-|V |-|A|-|AR| Q Y Y+ Y Y+ Y Y+ Y Y+ Y Y+ SM RC CM
A-31-105-8 25 6485 6485 6485 6485 16 9 409 699 1419 284 1.4 1.4 1.8

50 5032 5032 5032 5032 1 1 0 0 0 0 0.0 0.0 0.0
75 5032 5032 5032 5032 2 1 0 0 0 0 0.0 0.0 0.0

A-31-105-47 25 30247 30247 30247 30247 15 154 1246 2317 23 0 4.6 9.9 8.2
50 19253 19044 19324 19806 TL TL 5137 11067 7876 335 7.1 2.2 1.1
75 18289 18289 18298 19868 TL TL 8285 12356 525 0 8.6 2.1 2.1

A-58-168-15 25 11329 11329 11329 11329 85 96 803 1596 1587 0 0.0 0.0 1.2
50 7770 7564 7770 7966 4454 TL 1392 6629 2124 33 0.0 0.5 0.0
75 6733 6733 6733 6733 2 2 0 0 0 0 0.0 0.0 0.0

A-58-168-81 25 41982 41982 41982 41982 267 586 3873 6408 801 73 3.2 9.6 9.6
50 24113 24081 25059 28153 TL TL 5183 13226 591 0 6.0 5.1 5.1
75 22480 22478 24209 24667 TL TL 9099 11180 168 0 -3.7 -0.4 -0.4

A-84-220-20 25 14852 14852 14852 14852 228 322 1135 2911 1502 3 10.8 15.4 6.1
50 9082 9016 9082 9673 4599 TL 2623 8131 1324 0 9.2 6.5 10.6
75 7899 7950 9031 9031 TL TL 3 8940 970 0 3.6 -1.0 1.8

A-84-220-103 25 39718 39718 39718 39718 4536 6833 4519 10673 12958 1678 31.3 51.8 51.7
50 23545 23560 26836 26836 TL TL 90 17750 433 0 -6.5 -3.5 -3.4
75 22463 22463 24794 24794 TL TL 1 4102 20 0 -7.1 -1.2 0.6

P-42-142-11 25 6087 6087 6087 6087 109 100 626 1455 2212 0 0.0 17.0 0.0
50 4551 4551 4551 4551 65 308 27 3281 9 0 5.3 0.0 5.3
75 4512 4512 4512 4512 2 2 0 0 0 0 0.0 0.0 0.0

P-42-142-65 25 20791 20702 20791 20838 4306 TL 3455 9796 14014 1208 7.2 9.5 9.5
50 13641 13585 14664 15748 TL TL 4916 15440 1675 0 -1.2 1.1 -1.3
75 13070 13069 13507 13646 TL TL 7029 10354 486 0 2.7 -1.0 -1.0

P-61-205-20 25 7472 7472 7472 7472 863 826 1144 3930 2879 170 4.4 1.1 1.7
50 5906 5809 6010 6010 TL TL 18 9627 1768 0 3.6 0.0 3.4
75 5677 5677 5677 5677 3 2 0 0 0 0 6.3 0.0 6.1

P-61-205-98 25 25984 25934 26080 33256 TL TL 5434 13316 10608 0 14.9 19.2 15.3
50 16646 16597 18500 20187 TL TL 6308 16560 584 0 -1.3 1.5 1.5
75 16423 16423 18362 18362 TL TL 0 5900 57 0 -2.3 -4.4 -4.4

P-123-350-33 25 9397 9312 9397 9451 3112 TL 1828 6525 2603 483 12.6 11.6 22.1
50 6254 6253 7211 7211 TL TL 46 8815 152 0 -0.4 -3.0 3.3
75 6085 6085 6133 6133 TL TL 78 980 3 0 12.6 0.0 13.0

P-123-350-170 25 31832 31908 33016 41409 TL TL 6189 19077 1201 0 12.9 17.6 16.3
50 20223 20228 25475 25475 TL TL 1 1601 0 0 271.1 -0.5 -2.0
75 19489 19489 22070 22070 TL TL 0 0 0 0 372.1 -0.3 -0.8

V-60-218-20 25 14282 14282 14282 14282 33 92 503 1454 3 0 10.6 15.6 6.0
50 9358 9358 9358 9358 221 338 1902 4633 25 0 0.0 10.2 0.0
75 8389 8446 9197 9197 TL TL 29 11093 1073 0 -0.7 0.0 1.1

V-60-218-103 25 63825 63825 63825 63825 499 2155 4663 9159 847 1023 - - -
50 29720 29774 30964 37865 TL TL 8795 20396 1166 0 5.6 11.7 11.5
75 24592 24592 29862 29862 TL TL 0 12096 82 0 -0.7 5.7 4.1

V-84-279-23 25 12678 12678 12678 12678 487 2353 1347 4449 1559 0 52.2 56.0 58.4
50 7966 8043 8505 8780 TL TL 1782 9186 1325 0 -0.6 -0.6 3.0
75 7254 7215 7254 7254 1920 TL 23 9823 780 0 1.0 0.0 1.0

V-84-279-130 25 71633 71629 72028 72984 TL TL 5945 11495 4430 1608 - - -
50 34076 34076 43672 43672 TL TL 133 10616 391 0 -12.5 -5.7 -9.5
75 26194 26194 35006 35006 TL TL 0 0 0 0 -10.5 -3.4 -7.5

V-146-401-38 25 16670 16670 16670 16670 2527 1767 1450 6116 1874 41 26.3 4.7 28.3
50 10550 10642 11896 11896 TL TL 40 12493 66 0 -2.1 -3.3 8.4
75 8712 9085 10167 10167 TL TL 0 4859 0 0 -1.4 -0.6 8.6

V-146-401-194 25 76650 76649 77667 76742 TL TL 6110 20367 1972 244 26.6 42.5 42.9
50 39804 39801 48628 48628 TL TL 0 2100 0 0 477.8 -0.7 -0.7
75 31785 31785 40510 40510 TL TL 0 0 0 0 542.0 -0.8 -0.8
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Table 2: Relative deviations of total travel time with respect to OPT (500) for different discretization
levels

D′ - 500 100 1
instance Q D OPT g Sg Rg Sg Rg Rg t[s]
A-31-105-47 25 500 0.0 0.0 0.0 -2.3 -2.3 -2.7 298

1000 2.9 0.0 0.0 -2.3 -2.3 -3.0 30
2000 7.0 1.0 1.0 -1.2 -1.2 -1.8 23

50 500 0.0 0.0 0.0 -0.2 -0.2 -0.2 17422
1000 0.7 0.7 0.7 0.7 0.7 0.7 2229
2000 0.7 0.7 0.7 0.7 0.7 0.7 224

A-58-168-15 25 500 0.0 0.0 0.0 -2.3 -2.3 -3.0 113
1000 3.5 0.0 0.0 -2.3 -2.3 -3.0 10
2000 11.6 0.4 0.9 -1.8 -1.4 -2.1 4

50 500 0.0 0.0 0.0 0.0 0.0 0.0 11122
1000 0.4 0.4 0.4 0.4 0.4 0.4 7138
2000 0.4 0.4 0.4 0.4 0.4 0.4 122

A-84-220-20 25 500 0.0 0.0 0.0 -2.8 -2.8 -3.6 1633
1000 4.1 0.0 0.0 -2.8 -2.8 -3.6 262
2000 17.1 3.3 3.4 0.8 0.8 0.1 56

50 500 0.0 0.0 0.0 -0.3 -0.3 -0.3 8264
1000 2.6 0.0 0.0 -0.3 -0.3 -0.3 4632
2000 12.6 12.6 12.6 12.6 12.6 12.6 1590

P-42-142-11 25 500 0.0 0.0 0.0 -3.5 -3.5 -3.9 44
1000 5.0 0.0 0.0 -3.5 -3.5 -3.9 44
2000 14.1 0.0 0.0 -3.5 -3.5 -3.9 15

50 500 0.0 0.0 0.0 0.0 0.0 0.0 5
1000 0.9 0.9 0.9 0.9 0.9 0.9 64
2000 6.2 6.2 6.2 6.2 6.2 6.2 343

V-60-218-20 25 500 0.0 0.0 0.0 -3.3 -3.3 -4.0 373
1000 4.2 0.2 0.2 -2.9 -2.9 -3.6 38
2000 12.2 0.2 0.2 -2.9 -2.9 -3.6 15

50 500 0.0 0.0 0.0 0.0 0.0 0.0 9890
1000 0.5 0.2 0.2 0.2 0.2 0.2 854
2000 6.7 0.0 0.0 0.0 0.0 0.0 436
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Table 3: Performance of heuristics (best values per line are marked bold)

relative primal bound in % runtime in seconds archive speedup tnoA/tA
SM RC CM SM RC CM SM RC CM

instance C Q K = 1 5 20 ∞ 1 5 20 ∞ 1 5 20 ∞ 1 5 20 ∞ 1 5 20 ∞ 1 5 20 ∞ 1 5 20 ∞ 1 5 20 ∞ 1 5 20 ∞
A-31-105-8 5 25 - 1.9 1.4 0.0 - 1.9 1.4 0.0 - 1.9 1.8 0.0 0 0 0 2 0 0 0 1 0 0 0 1 1.0 3.8 2.2 1.7 1.0 3.2 2.9 2.2 1.0 2.9 2.1 1.7

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 1 5 0 0 0 0 0 0 0 2 2.0 2.1 1.9 1.3 1.0 1.0 1.0 0.9 1.5 1.7 1.8 1.9
75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 1 4 0 0 0 0 0 0 0 2 1.7 1.9 1.9 1.3 1.0 0.5 1.0 1.1 1.0 1.7 1.7 1.1

A-31-105-47 2 25 - - 4.6 2.8 - - 9.9 6.4 - - 8.2 7.8 0 0 13 674 0 0 11 861 0 0 12 897 1.0 1.0 5.4 2.1 2.0 1.7 9.1 4.2 2.0 1.7 10.0 4.0
50 8.4 8.4 7.1 7.1 6.1 7.6 2.2 2.2 6.1 7.6 1.1 1.1 1 7 38 1134 1 4 34 2044 1 5 34 1920 2.5 3.1 3.1 1.7 5.9 4.9 5.2 1.8 5.0 6.1 6.3 1.9
75 9.2 8.5 8.6 7.6 8.9 8.9 2.1 2.1 6.8 6.8 2.1 2.1 2 10 70 1210 1 9 59 3382 2 14 78 3278 2.7 2.6 2.5 1.8 3.9 4.0 3.4 1.1 3.2 3.3 3.1 1.1

A-58-168-15 7 25 - - 0.0 0.0 - - 0.0 2.7 - - 1.2 0.8 0 0 2 36 0 0 1 33 0 0 1 19 1.0 1.0 3.2 1.4 2.0 1.5 3.3 2.2 1.0 1.5 5.2 2.5
50 0.0 0.0 0.0 0.0 11.6 10.7 0.5 0.5 0.0 0.0 0.0 0.0 0 2 11 82 0 1 9 106 0 2 11 60 3.5 3.6 3.1 2.0 2.1 2.0 3.1 2.2 3.3 3.5 3.2 3.5
75 11.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 5 13 74 0 0 0 9 1 5 23 114 2.3 2.2 3.2 1.9 1.0 1.0 1.0 1.1 2.9 3.0 2.9 2.8

A-58-168-81 1 25 - - 3.2 149.8 - - 9.6 180.7 - - 9.6 - 0 0 173 TL 0 0 123 TL 0 0 125 TL 1.0 1.0 7.0 - 1.6 2.0 6.9 - 1.6 2.0 6.2 -
50 4.2 4.4 6.0 303.7 8.9 8.9 5.1 232.5 8.9 8.9 5.1 - 7 45 257 TL 4 25 278 TL 4 25 302 TL 3.0 5.0 4.1 - 7.0 7.1 7.0 - 7.1 7.2 6.9 -
75 1.5 -0.9 -3.7 332.7 -0.4 -0.4 -0.4 185.3 -0.4 -0.4 -0.4 - 14 82 349 TL 10 70 452 TL 10 70 461 TL 4.7 3.5 2.6 - 5.3 5.2 4.9 - 5.3 5.2 4.7 -

A-84-220-20 11 25 - - 10.8 4.1 - - 15.4 8.2 - - 6.1 1.5 0 0 10 202 0 0 7 143 0 0 9 134 1.0 1.0 6.1 1.7 1.7 2.1 8.2 2.1 0.8 1.0 5.5 1.9
50 9.8 9.8 9.2 9.8 14.2 14.2 6.5 6.3 18.9 17.8 10.6 10.6 1 7 45 393 3 5 18 238 1 5 30 360 2.9 3.3 3.1 2.2 1.1 3.8 2.2 1.7 3.2 3.7 3.0 2.0
75 3.6 3.6 3.6 3.6 -1.0 -1.0 -1.0 -2.3 1.8 1.8 1.8 1.8 2 19 90 704 2 12 69 349 2 16 93 642 3.0 3.0 3.5 2.0 2.6 2.6 2.6 1.7 2.4 2.5 2.2 2.0

A-84-220-103 3 25 - - 31.3 215.7 - - 51.8 186.1 - - 51.7 - 0 0 358 TL 0 1 201 TL 0 1 171 TL 1.0 1.0 5.5 - 2.0 2.5 14.9 - 2.3 2.5 12.6 -
50 -5.5 -5.7 -6.5 498.4 -0.2 -0.2 -3.5 248.2 3.6 3.6 -3.4 - 22 135 774 TL 8 55 376 TL 8 53 427 TL 4.3 4.2 4.3 - 6.1 5.8 5.2 - 7.6 7.6 6.1 -
75 -6.9 -8.3 -7.1 590.6 -1.2 -1.2 -1.2 221.0 2.9 2.9 0.6 - 39 234 1307 TL 13 98 668 TL 21 159 1318 TL 3.7 2.9 2.4 - 3.0 2.9 2.9 - 4.6 4.4 2.7 -

P-42-142-11 9 25 - - 0.0 9.5 - - 17.0 10.7 - - 0.0 9.5 0 0 1 3 0 0 1 3 1 0 1 4 1.0 1.0 2.7 1.8 1.0 1.2 3.0 2.8 0.1 0.9 2.8 1.5
50 5.3 5.3 5.3 5.3 0.0 0.0 0.0 0.0 5.3 5.3 5.3 5.3 0 1 5 12 0 0 1 5 0 1 4 10 2.5 2.5 2.5 2.3 2.0 2.4 2.8 2.4 2.0 2.4 2.6 2.4
75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1 4 11 0 0 0 0 0 1 4 10 2.6 2.8 2.9 2.3 0.7 1.3 0.9 0.9 2.0 2.7 3.0 2.3

P-42-142-65 1 25 - - 7.2 7.2 - - 9.5 10.3 - - 9.5 10.3 0 0 68 1420 0 0 68 2571 0 0 76 2813 1.0 1.0 3.0 2.0 2.0 2.3 10.3 1.4 2.2 2.3 9.8 1.3
50 -2.0 0.4 -1.2 -3.6 1.4 1.1 1.1 1.1 -0.7 -0.1 -1.3 -1.3 4 24 148 2521 3 22 122 3580 3 17 130 2647 2.6 2.7 2.9 1.4 6.8 6.1 7.4 1.0 6.3 4.7 6.5 1.4
75 2.7 2.7 2.7 3.5 0.4 -1.0 -1.0 -1.0 0.4 -1.0 -1.0 -1.0 8 38 264 TL 3 21 132 TL 3 21 132 TL 2.7 3.3 2.3 - 3.8 4.2 4.7 - 3.7 4.2 4.5 -

P-61-205-20 13 25 - 7.1 4.4 4.4 18.8 9.5 1.1 0.9 - 10.8 1.7 0.6 0 2 15 118 0 1 14 113 0 2 20 99 1.0 2.2 1.8 1.3 5.5 5.4 5.8 2.7 1.0 3.6 4.8 2.9
50 3.6 3.6 3.6 3.6 6.0 0.4 0.0 0.0 3.4 3.4 3.4 3.4 1 7 37 245 1 5 12 110 1 5 26 117 2.8 2.9 3.1 1.4 3.4 3.4 3.3 2.7 2.6 3.2 3.1 2.8
75 6.3 6.3 6.3 6.3 0.0 0.0 0.0 0.0 6.1 6.1 6.1 6.1 1 8 40 247 0 0 0 7 1 5 23 147 2.1 2.2 1.8 1.4 1.0 1.0 1.1 1.1 2.4 3.0 3.0 1.4

P-61-205-98 1 25 - - 14.9 93.7 - - 19.2 217.1 - - 15.3 - 0 0 407 TL 0 1 260 TL 0 1 358 TL 1.0 1.0 7.1 - 2.9 3.3 11.4 - 3.0 3.1 9.9 -
50 1.0 -0.2 -1.3 321.3 3.4 3.2 1.5 390.2 3.3 3.3 1.5 - 29 206 1455 TL 18 142 1068 TL 19 139 1195 TL 3.9 4.9 2.5 - 8.0 7.4 3.4 - 7.5 7.1 3.0 -
75 -2.1 -1.7 -2.3 300.4 -4.9 -4.9 -4.4 269.6 -4.9 -4.9 -4.4 - 64 373 2399 TL 75 589 TL TL 75 605 TL TL 4.1 3.6 1.5 - 4.6 4.3 - - 4.7 4.2 - -

P-123-350-33 20 25 - 43.0 12.6 2.1 - 43.6 11.6 3.3 - 43.0 22.1 10.7 0 10 134 2030 0 8 131 1705 0 9 141 2799 1.0 2.6 2.6 1.4 1.2 9.2 5.0 2.1 1.1 3.7 3.9 1.3
50 1.1 1.1 -0.4 -0.4 -6.6 -6.6 -3.0 -3.5 1.4 -1.4 3.3 3.3 8 53 445 TL 9 61 314 3257 8 92 785 TL 2.7 2.9 2.9 - 5.5 5.6 2.8 1.1 3.3 3.4 1.4 -
75 12.6 12.6 12.6 12.6 3.7 0.0 0.0 0.0 13.0 13.0 13.0 15.2 14 97 498 TL 10 65 248 2629 18 126 1099 TL 1.7 1.8 1.7 - 2.2 2.3 2.9 1.4 2.7 2.8 1.7 -

P-123-350-170 2 25 - - 12.9 553.7 - - 17.6 - - - 16.3 - 0 0 TL TL 1 8 TL TL 1 7 3585 TL 1.0 1.0 - - 3.6 4.1 - - 3.6 4.1 1.0 -
50 -13.3 -12.3 271.1 733.3 -3.3 -3.0 -0.5 - -3.8 -3.8 -2.0 - 282 1925 TL TL 181 1407 TL TL 131 1038 TL TL 6.9 1.9 - - 9.4 2.6 - - 11.9 3.5 - -
75 -5.2 -5.0 372.1 861.8 -0.4 -1.7 -0.3 - -1.2 -2.9 -0.8 - 643 TL TL TL 849 TL TL TL 842 TL TL TL 4.9 - - - 4.2 - - - 4.3 - - -

V-60-218-20 8 25 - - 10.6 0.0 - - 15.6 0.0 - - 6.0 0.0 0 0 8 175 0 0 7 121 0 0 9 144 1.0 1.0 2.9 2.2 1.0 1.3 4.6 3.4 1.0 1.0 4.9 5.1
50 10.3 0.0 0.0 0.0 1.7 10.2 10.2 10.2 16.7 0.0 0.0 0.0 1 6 33 506 0 3 19 309 1 6 37 364 2.6 2.8 2.7 1.4 7.0 4.2 4.0 2.8 2.9 4.4 3.9 3.8
75 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 0.0 -1.8 -0.6 1.1 1.1 1.1 2 12 64 604 1 6 19 212 3 9 73 335 2.3 2.2 2.1 1.7 4.2 4.2 2.7 2.7 2.9 2.6 1.6 1.6

V-60-218-103 1 25 - - - 18.8 - - - 297.1 - - - - 0 0 0 TL 0 1 6 TL 0 1 6 TL 1.0 1.0 1.0 - 2.0 2.5 4.3 - 2.0 2.5 4.3 -
50 7.4 6.6 5.6 355.2 20.4 19.7 11.7 791.1 20.4 16.0 11.5 - 18 111 602 TL 13 71 412 TL 13 54 433 TL 4.2 5.0 4.1 - 11.3 8.5 8.7 - 11.6 9.3 8.3 -
75 -0.7 0.2 -0.7 488.5 8.6 5.7 5.7 798.6 8.6 4.1 4.1 - 31 217 1050 TL 24 227 1306 TL 25 216 2077 TL 5.4 4.9 3.4 - 7.0 7.2 2.8 - 6.7 6.3 1.7 -

V-84-279-23 14 25 - - 52.2 12.4 - - 56.0 2.0 - - 58.4 5.3 0 0 13 280 0 0 17 216 0 0 20 411 1.0 1.0 3.0 1.6 1.4 1.9 6.7 3.7 1.2 1.0 4.8 3.2
50 15.0 3.0 -0.6 -0.6 1.4 1.4 -0.6 -0.6 19.0 6.7 3.0 3.0 2 15 81 846 1 9 70 712 2 13 75 662 2.8 4.3 2.8 1.5 4.2 4.2 3.5 3.4 3.0 3.9 2.8 2.6
75 3.0 0.0 1.0 1.0 3.0 0.0 0.0 0.0 3.0 1.0 1.0 1.0 3 29 77 760 1 7 33 336 2 11 72 356 5.9 3.4 4.0 2.0 3.2 3.4 3.0 4.3 4.6 5.6 3.7 2.4

V-84-279-130 3 25 - - - 337.3 - - - 71.9 - - - - 0 0 0 TL 0 1 8 TL 0 1 7 TL 1.0 1.0 1.0 - 2.1 2.1 2.5 - 1.9 2.1 2.4 -
50 -11.0 -15.1 -12.5 465.0 7.0 -2.9 -5.7 133.5 -0.1 -0.3 -9.5 - 46 311 2459 TL 25 204 1236 TL 29 197 1565 TL 3.4 6.1 1.5 - 13.5 13.5 2.9 - 15.4 12.4 2.3 -
75 -9.9 -8.3 -10.5 604.9 -3.1 -4.4 -3.4 153.7 -8.0 -8.0 -7.5 - 104 661 TL TL 67 581 TL TL 82 643 TL TL 4.8 4.6 - - 8.3 6.2 - - 11.1 5.6 - -

V-146-401-38 21 25 - - 26.3 109.1 - - 4.7 2.3 - - 28.3 31.1 0 0 496 TL 0 1 250 TL 0 0 876 TL 1.0 1.0 2.6 - 1.5 2.0 4.4 - 1.0 1.1 2.3 -
50 -2.1 -2.1 -2.1 264.5 -3.3 -3.3 -3.3 -1.6 9.7 9.7 8.4 18.2 14 88 576 TL 14 106 1038 TL 15 98 755 TL 3.4 4.0 2.9 - 5.2 5.0 3.5 - 6.1 6.1 4.6 -
75 -1.4 -1.4 -1.4 391.4 -3.0 -3.0 -0.6 0.0 8.6 8.6 8.6 134.6 41 294 1749 TL 36 278 816 TL 34 258 2302 TL 3.9 3.8 2.1 - 3.4 3.2 4.1 - 3.8 3.6 1.6 -

V-146-401-194 1 25 - - 26.6 412.5 - - 42.5 254.2 - - 42.9 - 0 0 TL TL 1 6 TL TL 1 6 TL TL 1.0 1.0 - - 2.3 3.3 - - 2.4 3.1 - -
50 -8.6 -9.8 477.8 586.6 0.6 -1.5 -0.7 - 0.2 -1.5 -0.7 - 320 1967 TL TL 228 1188 TL TL 226 1179 TL TL 6.3 1.8 - - 15.8 3.0 - - 15.9 3.1 - -
75 -8.6 -7.5 542.0 724.2 -2.1 -2.1 -0.8 - -2.1 -1.8 -0.8 - 811 TL TL TL 393 3080 TL TL 394 TL TL TL 4.4 - - - 9.2 1.2 - - 9.1 - - -
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