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Abstract

In this paper, we introduce and study a generalization of the degree constrained
minimum spanning tree problem where we may install one of several available
transmission systems (each with a different cost value) in each edge. The de-
gree of the endnodes of each edge depends on the system installed on the edge.
We also discuss a particular case that arises in the design of wireless mesh net-
works (in this variant the degree of the endnodes of each edge depend on the
transmission system installed on it as well as on the length of the edge). We
propose three classes of models using different sets of variables and compare
from a theoretical perspective as well as from a computational point of view,
the models and the corresponding linear programming relaxations. The com-
putational results show that some of the proposed models are able to solve to
optimality instances with 100 nodes and different scenarios.

Keywords: OR in telecommunications networks, spanning tree, degree
constraints, wireless mesh networks

1. Introduction

The Degree Constrained Minimum Spanning Tree Problem (DCMSTP) is a well
known variant of the classical Minimum Spanning Tree problem. The DCMSTP
contains additional constraints imposing a maximum value on the degree of the
nodes (see for example [4, 6, 13]). Another variant imposing a minimum degree
in all nodes except the leaves has been proposed in [1].

In this paper, we introduce and study a generalization of the DCMSTP where we
may install one of several available transmission systems (each with a different
cost value) in each edge. The degree of the endnodes of each edge depends
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on the system installed on the edge. We also discuss a particular case of the
problem introduced here that arises in the design of wireless mesh networks. In
this variant the degree of the endnodes of each edge depend on the transmission
system installed on it as well as on the length of the edge (shorter edges and/or
with a better transmission system allow higher degrees on its endpoints).

The paper is organized as follows. Section 2 describes the new problem and sub-
section 2.1 describes the variant arising in the context of the design of wireless
mesh networks. In section 3, we describe three classes of models for the prob-
lems and compare them from a theoretical perspective. In section 4 we present
computational results for the general variant as well as for the wireless based
variant to compare the models in terms of the Linear Programming gaps and
running times to obtain the optimal solutions. Finally, section 5 summarizes
the main conclusions of this work.

2. Description and motivation of the problem

Consider an undirected graph G = (X,E) where X = {1, . . . , n} represents the
set of network nodes and E ⊆ X2 is the set of edges {i, j}, representing possible
network links (we denote by E(i) the set of edges incident in node i). We assume
that S is the set of available types of transmission systems that may be used in
the network design solution. For each link {i, j} and each transmission system
s ∈ S, we associate a cost Cs

ij and a maximum degree Ds
ij of its endnodes i and

j (typically, Ds+1
ij > Ds

ij and Cs+1
ij > Cs

ij). Note that for a given transmission
system s, the values Ds

ij and Cs
ij may differ for different pairs of nodes i and

j. Also, it may happen that for some pairs, i and j, a given system s is not
available and, in fact, E is the set of pairs of nodes such that at least one of the
available transmission systems can be used.

We aim to find a ”minimum” cost tree that satisfies the required degree con-
straints. Note that, for each edge such that more than one transmission system
can be used, we have the option of installing a more expensive transmission
system, allowing both endnodes to have higher degrees, or alternatively the op-
tion of installing a lower cost transmission system constraining the degree of the
endnodes to be lower.

Note that, when we only have one transmission system, say s = s∗, and Ds∗

ij is
the same for all links {i, j}, we obtain the DCMSTP mentioned in the previous
section. Thus, the problem as described is NP -Hard (see [9]).

Next, we explain that this problem is closely related to the design of point-to-
point wireless networks when Cs

ij is constant for all {i, j} such that the trans-
mission system s ∈ S can be used.

2.1. Wireless networks variant

In the network design of point-to-point wireless mesh networks, each link is
implemented through a point-to-point wireless system composed by a pair of
transmitter/receiver antennas and signal processing units (one at each endnode
of the link) working on a frequency channel, chosen from a possible set of chan-
nels. A wireless system has always an associated distance range (i.e., maxi-
mum distance between antennas), defined in its technical specification, which is
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roughly the same for all wireless channels and, in general, systems with higher
distance ranges are more expensive. Therefore, given a set S of available wire-
less systems, the ones that can be installed on link {i, j} are the ones whose
distance range is not lower than the line of sight (i.e., with no wireless obstacles
between them) distance between i and j.

The distance range of a wireless system, though, always assumes no wireless
interference from other sources. In current wireless technologies, due to the
scarcity of the spectrum, there is a limited set of available frequency channels
and many of them are partially overlapped between each other. For example, in
IEEE 802.11 WiFi wireless mesh technologies, there is a total of 13 frequency
channels, numbered from 1 to 13, but the maximum number of non-overlapped
channels is three (for example, channels 1, 6 and 11) [12]. If the network is
configured with only non-overlapping channels, the maximum degree of the
solution is quite constrained, which might not be a problem if graph G is dense
but might be unfeasible when graph G is sparse.

In this paper, we address the variant with a possible overlapping set of frequency
channels on each node. The usage of overlapping channels let the number of
channels used by the links starting/ending on the same node to be higher (and,
therefore, the node degree can be higher on a feasible solution) but the adja-
cent channel interference must be taken into consideration (see, for example,
[14]). A node with wireless links for different neighbor nodes uses different
frequency channels. In a node using partially overlapped adjacent channels to
different neighbor nodes, part of the transmitted signal on one channel is added
as interference to the received signal on the other channels. The effect of this
interference is that the distance range of the wireless systems is shortened. Note
that if more wireless links are set on the edges adjacent to a node, the frequency
channels must be closer between each other and more adjacent interference is
added to each wireless system.

The maximum amount of interference of the other channels can be used to de-
termine the resulting reduced distance range for each wireless system belonging
to S for each possible node degree value (see [19, 5] for methods and models to
estimate adjacent-channel interference). Then, for each pair of network nodes i
and j, we can determine the wireless systems that can still be installed based
on the distance between i and j and for each possible node degree value.

For example, a given system link s, with cost fs and with a distance range of 15
when there is no interference, may have the distance range reduced to 5 if one
(or both) of the endnodes of the link where we want to install the system has
a degree of 3 or 4 or might not work at all if one of the endnodes has a degree
larger than 4. In this case, if we want to install a system of type s on the link
between a given pair of nodes i and j, whose distance is 10, for example, then
we have Cs

ij = fs and Ds
ij = 2. On the other hand, if the distance between i

and j is 4, for example, then we have Cs
ij = fs and Ds

ij = 4. Finally, the system
s cannot be used if the distance between i and j is 20, for example.

Consider the example in Figure 1 where the values associated with each link
on Figure 1a represent the link distances and the maximum degree (given by
the number of overlapping frequencies that the operator may use) is 3. In this
example, there are three available system types costing 5 (type I), 9 (type II) and
12 (type III). In links with a distance value less than 5, all system types can be
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used with the maximum degree in their endnodes. In links with a distance value
between 5 and 10, systems of type I require a maximum degree of 2. Finally, in
links with distance value between 10 and 15, systems of type I cannot be used
(their distance range is lower) and systems of type II require a maximum degree
of 2.
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(c) Solution with a cost = 47.

Figure 1: Solutions example.

If we try to use a system of type I in the link {b, d} there is no solution. If we
use a system of type II in this link, the best solution has a cost of 48 (see the
solution in Figure 1b). If we upgrade the system installed on this link, using a
system of type III, we obtain a solution with a lower cost of 47 (see solution in
Figure 1c) by replacing link {a, c} (with a system of type II installed), by the
link {a, b} (with a system of type I installed). The upgrade of the system on
the link {b, d} allowed the degree of node b to be increased from 2 to 3.

In this problem, we assume that interference is critical only between channels
used on the same node. In fact, a channel used on a wireless link between node i
and j might also produce co-channel interference on other nodes whose wireless
links (not involving i and j) are set on the same frequency channel. We consider,
though, that such interference is negligible since, in general, the directionality of
the antennas concentrates the wireless signal power in the direction towards the
receiver antenna and attenuates strongly the signal towards other directions.

Note that the complete design of wireless mesh networks involves a larger set of
issues like node location or channel assignment (see [3] in applying mathematical
optimization models in the design of WLANs). In this paper, we assume that
node location is already decided. Although the variant addressed in this paper
may be viewed as a simpler version of the problem since no channel assignment is
performed, it still contains node degree constraints on the pair of network nodes
that can be connected by a wireless system, that have not been considered before
in the combinatorial optimization/network design area.
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3. Formulations

In this section we describe three classes of integer linear formulations for the
problem. The formulations described in this section contain a set of variables
and inequalities that is common to all of them. These constraints are described
in section 3.1 and contain the binary variables x{i,j} indicating whether edge

{i, j} ∈ E is included in the solution and binary variables ydi indicating whether
node i ∈ X has degree equal to d ∈ {1, . . . , D} in the solution. These variables
and similar constraints have already been used in the models introduced and
described in [7, 10, 11] for problems with non-linear costs associated to the node
degrees.

The first class of formulations (described in section 3.2) uses additional binary
variables vm{i,j} indicating whether the edge {i, j} ∈ E is selected and the max-

imum degree of nodes i and j is m (with m = 2, . . . , D). These variables are
sufficient to describe the objective function of the problem since the extra index
permits us to define the cost of the system to be installed between these two
nodes. In fact, in our models we use the Cs

ij and Ds
ij parameters (see section

2) to model the cost structure in the following way: for each link {i, j}, the
value cm{i,j}, gives the cost of the cheapest cost transmission system that can
be used, provided that m is the maximum between the degrees of nodes i and
j. On the other hand, as will be noted in section 3.2, constraints linking the
variables vm{i,j} with the variables ydi are not as straightforward as the similar
corresponding linking constraints for the models that use other sets of variables
with more information (as in sections 3.3 and 3.4). We can consider the vari-
ables vm{i,j} as symmetric in the sense that we have no information on which
node the maximum degree is attained. In fact, it is this lack of information that
leads to ”clumsy” inequalities relating the two sets of variables.

The second class of formulations (described in section 3.3) uses ”asymmetric”
binary variables tmk

{i,j} where indexes i, j and m have the same meaning as in

the definition of the vm{i,j} variables, and the extra index k indicates the node (i

or j) where the maximum degree is obtained. In some sense, the new variables
provide more information than the v variables as an ”arc” variable provides
more information than a corresponding ”edge” variable. As we shall see in the
computational results on section 4, the additional information leads to drastic
improvements in the value of the linear programming bounds.

The third class of formulations (described in section 3.4) can be seen, in a certain
way, as a natural follow up of previous works by the authors (see in [7, 10, 11]).
The formulations use edge-degree variables that provide information on the de-
gree of the two nodes, that is, binary variables z

pq

{i,j} indicating whether the

edge {i, j} ∈ E is selected and the degrees on node i and j are p and q, respec-
tively. Although leading to models with more variables, the information on the
degree of both nodes permits us to write equality constraints linking the new
variables and the degree variables ydi , leading to a valid model with much fewer
constraints and which may be preferable from a computational point of view
to obtain the optimal integer solutions. We will also show that the information
attached to the new variables permits us to derive a set of straightforward valid
inequalities that lead to a model which dominates the linear programming re-
laxation of the model with the strongest linear programming bound from the
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second class. However, our results will also show that the linear programming
bounds provided by these models are better, but in certain cases only slightly
better, than the ones provided by the best model of the second class. Thus it
is not clear that they should be preferred over the ones of the second class.

3.1. Common part

Consider the binary variables x{i,j} indicating whether edge {i, j} ∈ E is in-

cluded in the solution and binary variables ydi indicating whether node i ∈ X

has degree equal to d ∈ {1, . . . , D} in the solution. The three formulations
studied in this paper include the set of constraints (1.1) - (1.5).

Constraints (1.2) and (1.3) define the degree variables ydi and guarantee that
ydi = 1 iff the number of edges adjacent to node i is equal to d. Constraints (1.4)
and (1.5) define the domain of the variables. Constraints (1.1), stating that the
solution defined in the x{i,j} variables is a spanning tree, are still written in a
generic form and can be modeled in several ways (see, for instance, [16]).

{

{i, j} ∈ E : x{i,j} = 1
}

is a spanning tree (1.1)

D
∑

d=1

d · yd
i =

∑

{i,j}∈E(i)

x{i,j} i ∈ X (1.2)

D
∑

d=1

y
d
i = 1 i ∈ X (1.3)

x{i,j} ∈ {0, 1} {i, j} ∈ E (1.4)

y
d
i ∈ {0, 1} i ∈ X; 1 ≤ d ≤ D (1.5)

For our computational experiment we have modelled the set of constraints (1.1)
using the following well known directed model (see [16]):

∑

(i,j)∈A

aij = 1 j = 2, . . . , n (1.6)

∑

(i,j)∈A
i/∈U,j∈U

aij ≥ 1 U ⊆ X\{1} (1.7)

aij + aji = x{i,j} {i, j} ∈ E (1.8)

aij ∈ {0, 1} (i, j) ∈ A (1.9)

In this model, aij are binary arc variables indicating whether or not arc (i, j)
is in the directed tree rooted at a given node, e.g., node 1. The set A denotes
the set of arcs that are defined by directing every edge both ways (for edges
incident to node 1 we only consider the arc leaving node 1),

A = {(i, j), (j, i) : {i, j} ∈ E and i, j 6= 1} ∪ {(1, j) : {1, j} ∈ E}

Directed inequalities (1.7) are added to the model within a cutting plane al-
gorithm. Violated cuts are detected in the usual way by computing maximum
flows from the root node to all the other nodes. If a maximum flow is below 1 we
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add the corresponding cut inequality to the model. If multiple minimum cuts
are found for one particular source-target pair we consider both the inequalities
corresponding to the cut nearest to the source and nearest to the target. Ad-
ditionally, we search for the minimum cut with the smallest number of arcs by
adding ǫ = 1e−6 to all arc capacities (see [15] for further details).

As noted before, the three classes of models differ on the set of edge-degree

variables that characterize the type of transmission system to be installed.

3.2. V models

Consider the binary variables vm{i,j} indicating whether the edge {i, j} ∈ E is

in the solution and the maximum degree between nodes i and j is m (with
2 ≤ m ≤ D). These variables are not defined for m = 1, since edges where the
degree of both endpoints is equal to one exist only in graphs with two nodes.

The problem can then be formulated as follows:

(V ) min
∑

{i,j}∈E

D
∑

m=2

c
m
{i,j} · vm{i,j} (2.1)

(1.2)− (1.9)

x{i,j} =

D
∑

m=2

v
m
{i,j} {i, j} ∈ E (2.2)

v
m
{i,j} ≤ y

m
i + y

m
j {i, j} ∈ E; 2 ≤ m ≤ D (2.3)

v
m
{i,j} ≤

m
∑

d=1

y
d
i i ∈ X; {i, j} ∈ E(i); 2 ≤ m ≤ D − 1 (2.4)

v
m
{i,j} ∈ {0, 1} {i, j} ∈ E; 2 ≤ m ≤ D (2.5)

The objective cost function is straightforward. Constraints (2.2) link the two
sets of edge variables, x{i,j} and vm{i,j}. Constraints (2.3) and (2.4) link the

node-degree variables ydi with the edge-degree variables vm{i,j}. For a given edge

{i, j}, constraints (2.3) guarantee that one of the nodes i or j must have a degree
equal to m, if vm{i,j} = 1 and constraint (2.4) guarantee that neither one of these
nodes has a degree greater than m.

We discuss next several model enhancements. First we observe that constraints
(2.4) can be lifted into

m
∑

d=2

v
d
{i,j} ≤

m
∑

d=1

y
d
i i ∈ X; {i, j} ∈ E(i); 2 ≤ m ≤ D − 1 (2.4∗)

At first sight, it may appear that these inequalities are not valid since they
appear to allow non-feasible situations such as, va{i,j} = 1 and ybi = 1 with

2 ≤ a < b ≤ m′ for a given m = m′. This situation, however, cannot occur
since, va{i,j} = 1 and the constraint (2.4∗) for m = a and the same edge and node

i, implies that 1 ≤
∑a

d=1 y
d
i , contradicting ybi = 1 (b > a) due to constraints

(1.3).
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Our computational results indicate that for almost all instances tested, the
effect of the lifted constraints (2.4∗) over constraints (2.4) is null. Thus, for
simplicity, we keep the same designation - V - for the model with constraints
(2.4∗) replacing constraints (2.4). We observe that this non-straightforward
lifted version of constraints (2.4), has been found when comparing the linear
programming relaxation of model V with the linear programming relaxation of
the model presented in section 3.4.

For a given m ∈ {2, . . . , D}, the relation between the variables vm{i,j} and ydi can

be further strengthened by considering the following set of valid inequalities,

m · ym
i ≤

∑

{i,j}∈E(i)

D
∑

d=m

v
d
{i,j} i ∈ X; 3 ≤ m ≤ D

These valid inequalities state that, if a given node i has a degree equal to m,
then there must exist m edges incident to node i with a maximum degree greater
than or equal tom. Note that, we only need to write these inequalities form ≥ 3
since for m = 2, the inequality is dominated by constraint (1.2) for that same
node i and constraints (2.2) for the edges in E(i). These inequalities can be
further lifted to

D
∑

d=m

d · yd
i ≤

∑

{i,j}∈E(i)

D
∑

d=m

v
d
{i,j} i ∈ X; 3 ≤ m ≤ D (2.6)

The validity of the inequalities (2.6) and the lifted inequalities (2.4∗) can be
indirectly established by the proof of Proposition 3.3 (see section 3.4) where we
show that a set of inequalities already proven valid implies two sets of inequalities
that are stronger versions of the inequalities (2.4∗) and (2.6), respectively.

We denote by V+ the model V with the addition of the valid inequalities (2.6).
Computational results given in section 4 show that these inequalities are effective
to improve the linear programming bound given by the original model.

We conclude this section by pointing out that the inequalities (1.3) and (2.2),
permit us to rewrite the inequalities (2.4∗) in several different equivalent ways.
Similarly, inequalities (2.6) can also be rewritten in equivalent forms by using
inequalities (1.2) and (2.2).

3.3. T models

Consider the binary variables tmk
{i,j} where the indexes i, j and m have the same

meaning as in the definition of the vm{i,j} variables. The extra index k indicates

the node (i or j) where the maximum degree is obtained. Since we need to
distinguish the case where the maximum degree is obtained in both nodes i

and j, we also consider variables tm{i,j} for this situation and in the definition of

variables tmk
{i,j} the maximum degree is obtained exactly in one of the endpoints,

k ∈ {i, j}. The first model of this section - model T - is described below,
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(T ) min
∑

{i,j}∈E

D
∑

m=2

c
m
{i,j} ·

(

t
mi
{i,j} + t

mj

{i,j} + t
m
{i,j}

)

(3.1)

(1.2)− (1.9)

x{i,j} =

D
∑

m=2

(tmi
{i,j} + t

mj

{i,j} + t
m
{i,j}) {i, j} ∈ E (3.2)

t
mi
{i,j} + t

m
{i,j} ≤ y

m
i i ∈ X; {i, j} ∈ E(i); 2 ≤ m ≤ D

(3.3)

t
mi
{i,j} ≤

m−1
∑

d=1

y
d
j i ∈ X; {i, j} ∈ E(i); 2 ≤ m ≤ D

(3.4)

t
m
{i,j}, t

mi
{i,j}, t

mj

{i,j} ∈ {0, 1} {i, j} ∈ E; 2 ≤ m ≤ D (3.5)

The objective function is straightforward. Constraints (3.2) relate the new edge-

degree variables with the edge variables x{i,j}. For a given edge {i, j} constraints
(3.3) guarantee that, if the maximum degree is obtained (uniquely or not) on
one of its endnodes, say node i, then its degree must be equal to that maximum
value; if the maximum degree is obtained uniquely in node i, then constraint
(3.4) for that same edge and maximum degree guarantees that the degree of
the other endnode, node j, must be strictly less than the maximum degree.
Constraints (3.5) are the domain constraints for the new variables.

The edge-degree variables in models V and T are related by the following equal-
ities

v
m
{i,j} = t

mi
{i,j} + t

mj

{i,j} + t
m
{i,j} {i, j} ∈ E; 2 ≤ m ≤ D (3.6)

which permit us to evaluate the effect of adding information on which node
attains the maximum degree.

Note that, in model V we had one constraint (2.3) for each edge and m and
now, in model T , we have two constraints (3.3) for the same edge and m, one for
each of its endnodes. By comparing constraints (3.3) and (3.4) with constraints
(2.3) and (2.4) from the models of the first class, we illustrate what we said
before in the beginning of section 3, that the variables tmk

{i,j} are an asymmetric

version of the vm{i,j} variables. In fact, for a fixed edge {i, j} and a fixed value of

m ≥ 2, by adding constraints (3.3) for both nodes i and j and using the linking
equalities (3.6), we obtain

v
m
{i,j} + t

m
{i,j} = t

mi
{i,j} + t

mj

{i,j} + 2 · tm{i,j} ≤ y
m
i + y

m
j

which is a stronger version of constraints (2.3).

With respect to constraints (2.4), consider a given edge {i, j} and a maximum
degree m ≥ 2. If we add constraint (3.3) for node i (node j) with constraint
(3.4) for node j (node i) and use the linking equalities (3.6) we obtain constraint
(2.4) for node i (node j) for the given edge and degree.
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Similar arguments are used to show that ”directed” linking constraints using
arc variables imply ”undirected” linking constraints using edge variables.

Constraints (3.4) can be lifted in the same way as constraints (2.4) in model V
were lifted and thus we obtain the following lifted constraints:

m
∑

d=2

t
di
{i,j}+

m−1
∑

d=2

(

t
dj

{i,j} + t
d
{i,j}

)

≤

m−1
∑

d=1

y
d
j i ∈ X; {i, j} ∈ E(i); 2 ≤ m ≤ D (3.4∗)

An indirect formal proof that constraints (3.4∗) are valid is left for Proposition
3.3. Like in the previous class of models, for almost all instances tested, the
effect of the lifted constraints (3.4∗) over the constraints (3.4) is null and for
simplicity we keep the designation T for the lifted model.

The lifted constraints (2.4∗) of the model V, for a given edge edge {i, j} and
m ≥ 2, can be obtained in a similar way as before, from the T model, by adding
constraints (3.3) (for one of the nodes) and constraints (3.4∗) for the other node
and then using the linking equalities (3.6).

Adding the linking equalities (3.6) to model T does not alter its linear pro-
gramming relaxation since these equalities only define the v variables in terms
of the t variables. For simplicity, we still denote by T , the model T with the
linking equalities, (3.6). The arguments used above to relate constraints (3.3)
and (3.4∗) with constraints (2.3) and (2.4∗), respectively, permit us to conclude
(we omit the details for the remainder of the proof) that

Proposition 3.1. The projection of the set of feasible solutions of the linear

programming relaxation of T on the subspace defined by the variables x, y and v

is contained in the set of feasible solutions of the linear programming relaxation

of the model V.

For this class of models, we can also derive a set of valid inequalities that are
similar to the valid inequalities (2.6) presented before for model V :

D
∑

d=m

d ·yd
i ≤

∑

{i,j}∈E(i)

(

D
∑

d=m

(

t
di
{i,j} + t

d
{i,j}

)

+

D
∑

d=m+1

t
dj

{i,j}

)

i ∈ X; 2 ≤ m ≤ D (3.7)

Note that, for m = D, the summation on t
dj

{i,j} is null). Note also that unlike the

inequalities (2.6) in model V , the inequalities (3.7) for m = 2 are not implied
by constraints (1.2) and (3.2).

We denote by T+ the model T enhanced with the set of valid inequalities (3.7).
Our computational results will show that the inclusion of these valid inequalities
improve the lower bounds obtained with the linear programming relaxation of
model T .

Inequalities (2.6) and (3.7) have a similar interpretation. However, in the case
of inequalities (3.7) we observe that if a given node i has degree equal to m,
then there must exist m edges {i, j} incident to node i such that, for each one
there are only two possible situations: either the maximum degree is equal to
m (obtained exclusively in node i or in both nodes i and j) or the maximum
degree is greater than m (obtained exclusively in node j). Because of this fact,
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it is quite easy to see that by using the equalities (3.6) the inequalities (3.7)
are equivalent to stronger versions of the inequalities (2.6). This allows us to
conclude that (again, we still denote by T+ the model T+ augmented with the
definitional equalities (3.6)),

Proposition 3.2. The projection of the set of feasible solutions of the linear

programming relaxation of T+ on the subspace defined by the variables x, y and

v is contained in the set of feasible solutions of the linear programming relaxation

of the model V+.

Similarly to some of the inequalities in the V model, by using inequalities (1.2),
(1.3) and (3.2), inequalities (3.4∗) and (3.7) can be rewritten in different equiv-
alent ways.

3.4. Z models

Consider the binary variables z
pq

{i,j}, indicating whether the edge {i, j} ∈ E is

selected and the degrees on node i and j are p and q, respectively. For the same
reason explained before for variables v1{i,j}, the z11{i,j} variables are not defined.

The new model is denoted as Z . Again, the objective function is straightforward.
Constraints (4.2) relate the two types of edge variables in this model whereas
constraints (4.3) state that, if the degree of node i is equal to p then, in the
solution, exactly p edges are incident in that node, whatever the degree of node
j is. Note that, a model involving the new variables z is much simpler to write
than any of the models of previous two classes due to the information on the
degree of the two nodes.

(Z ) min
∑

{i,j}∈E

D
∑

m=2

c
m
{i,j} ·

(

m
∑

q=1

z
mq

{i,j} +

m−1
∑

p=1

z
pm

{i,j}

)

(4.1)

(1.2)− (1.9)

x{i,j} =

D
∑

p=1

D
∑

q=1

z
pq

{i,j} {i, j} ∈ E (4.2)

d · yd
i =

∑

{i,j}∈E(i)

D
∑

q=1

z
dq

{i,j} i ∈ X; 1 ≤ d ≤ D (4.3)

z
pq

{i,j} ∈ {0, 1} {i, j} ∈ E; 1 ≤ p, q ≤ D (4.4)

We also note that by adding constraints (4.3) for all p = 1, . . . , D and a given
node i, and then using constraints (4.2) for the edges incident on node i, we
obtain constraints (1.2) for the same node i. Thus, constraints (4.3) are a
disaggregation of (1.2) and the latter can be omitted from the model.

Computational results obtained with some instances permit us to state that
there is no relationship between the linear programming bound given by model
Z and the linear programming bounds given by the best, T+, and the worst, V ,
of the models described in the two previous sections. Thus, this non-dominance
relation applies to Z and all the models presented before.

However, as we have stated before, one of the reasons for using the new set of
variables is that it permits us to use the additional information on the degree
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of the two nodes in order to derive (hopefully) stronger valid inequalities. One
such example is given by the following inequalities

D
∑

q=1

z
pq

{i,j} ≤ y
p
i i ∈ X; {i, j} ∈ E(i); 2 ≤ p ≤ D (4.5)

These inequalities state that if edge {i, j} is in the solution and node i has
degree equal to p, whatever the degree on node j is, then the corresponding y

variable associated to node i and degree p must be equal to 1. We do not need
to consider inequalities (4.5) for p = 1 since they are implied by constraints
(4.3) for node i and d = 1.

The valid inequalities (4.5) are similar to the inequalities arising in the so-called
strong location models and also to the valid inequalities included in the complete
description of a small polytope introduced in [11]. Consider the following small
polytope for a given node i and a degree d:

d · yd
i =

∑

{i,j}∈E(i)

D
∑

q=1

z
dq

{i,j} (4.6)

0 ≤ z
dq

{i,j} ≤ 1 {i, j} ∈ E(i) (4.7)

0 ≤ y
d
i ≤ 1 (4.8)

For the given node and degree, including the corresponding set of valid inequal-
ities (4.5) for every edge {i, j} ∈ E(i) in the polytope defined by (4.6)-(4.8),
gives a complete description of the convex hull defined by the integer solutions
of the polytope. The proof is similar to the one given in [11]. Thus, in a certain
sense, there are no more valid inequalities, relating the z

pq

{i,j} and y
p
i variables

that may improve the linear programming bound of model Z , for a given node
i and a degree p.

The variables of the two classes of models, T and Z , are related by the following
equalities:

t
mi
{i,j} =

m−1
∑

q=1

z
mq

{i,j} {i, j} ∈ E; 2 ≤ m ≤ D (4.9a)

t
mj

{i,j} =

m−1
∑

p=1

z
pm

{i,j} {i, j} ∈ E; 2 ≤ m ≤ D (4.9b)

t
m
{i,j} = z

mm
{i,j} {i, j} ∈ E; 2 ≤ m ≤ D (4.9c)

We denote by Z+ the model Z augmented with inequalities (4.5). We also let
Z+ denote the same model augmented with the definitional equalities (4.9). In
terms of linear programming relaxation, we can state the following result be-
tween this stronger model Z+ and the best of the previous models,

Proposition 3.3. The projection of the set of feasible solutions of the linear

programming relaxation of Z+ on the subspace defined by the variables x, y and
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t is contained in the set of feasible solutions of the linear programming relaxation

of the model T+.

Proof. For a given edge {i, j}, constraints (3.2) can be obtained from con-
straints (4.2) after some index rearrangement and then using the equalities
(4.9),

x{i,j} =

D
∑

p=1

D
∑

q=1

z
pq

{i,j} =

D
∑

p=2

z
pp

{i,j} +

D
∑

q=2

q−1
∑

p=1

z
pq

{i,j} +

D
∑

p=2

p−1
∑

q=1

z
pq

{i,j} =

=

D
∑

p=2

t
p

{i,j} +

D
∑

q=2

t
qj

{i,j} +

D
∑

p=2

t
pi

{i,j} =

D
∑

m=2

(

t
m
{i,j} + t

mj

{i,j} + t
mi
{i,j}

)

Now, consider a given node i, an edge {i, j} ∈ E(i) and a maximum degree
equal to m. To obtain the constraint (3.3), we use equalities (4.9a) and (4.9c)
together with the valid inequality (4.5) for the given node, edge and degree (in
the last inequality),

t
mi
{i,j} + t

m
{i,j} =

m−1
∑

q=1

z
mq

{i,j} + z
mm
{i,j} ≤

D
∑

q=1

z
mq

{i,j} ≤ y
m
i

The lifted constraints (3.4∗) for a given node i, an edge {i, j} ∈ E(i) and m ≥ 2
can be obtained using equalities (4.9) and the respective valid inequalities (4.5)
for node j and p ≤ m− 1:

m
∑

d=2

t
dj

{i,j} +

m−1
∑

d=2

(

t
di
{i,j} + t

d
{i,j}

)

=
(4.9)

m
∑

d=2

d−1
∑

p=1

z
pd

{i,j} +

m−1
∑

d=2

d
∑

q=1

z
dq

{i,j} =

=

m−1
∑

p=1

m
∑

d=p+1

z
pd

{i,j} +

m−1
∑

d=2

d
∑

q=1

z
dq

{i,j}

By renaming d as q and p as d in the first term on the last expression, we obtain

m
∑

d=2

t
dj

{i,j} +

m−1
∑

d=2

(

t
di
{i,j} + t

d
{i,j}

)

=

m−1
∑

d=1

m
∑

q=d+1

z
dq

{i,j} +

m−1
∑

d=2

d
∑

q=1

z
dq

{i,j}
=

(d, q) 6= (1, 1)

=

m−1
∑

d=1

m
∑

q=1

z
dq

{i,j} ≤

m−1
∑

d=1

D
∑

q=1

z
dq

{i,j} ≤
(4.5)

m−1
∑

d=1

y
d
i

To obtain the valid inequality (3.7), first consider a given node i and a maximum
degree m ≥ 2. For every edge {i, j} ∈ E(i) we observe that

D
∑

d=m

D
∑

q=1

z
dq

{i,j} ≤

D
∑

d=m

D
∑

q=1

z
dq

{i,j} +

m−1
∑

p=1

D
∑

d=m+1

z
pd

{i,j} =

D
∑

d=m

d
∑

q=1

z
dq

{i,j} +

D−1
∑

d=m

D
∑

q=d+1

z
dq

{i,j} +

+

D
∑

d=m+1

m−1
∑

p=1

z
pd

{i,j} =

D
∑

d=m

d
∑

q=1

z
dq

{i,j} +

D
∑

q=m+1

q−1
∑

d=m

z
dq

{i,j} +

D
∑

d=m+1

m−1
∑

p=1

z
pd

{i,j}
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By renaming d as p and q as d in the second term of the last expression, we
obtain

D
∑

d=m

D
∑

q=1

z
dq

{i,j} ≤
D
∑

d=m

d
∑

q=1

z
dq

{i,j} +

D
∑

d=m+1

d−1
∑

p=m

z
pd

{i,j} +

D
∑

d=m+1

m−1
∑

p=1

z
pd

{i,j} =

=

D
∑

d=m

(

d−1
∑

q=1

z
dq

{i,j} + z
dd
{i,j}

)

+

D
∑

d=m+1

d−1
∑

p=1

z
pd

{i,j} =

=

D
∑

d=m

(

t
di
{i,j} + t

d
{i,j}

)

+

D
∑

d=m+1

t
dj

{i,j}

Finally, by adding constraints (4.3) for d = m, . . . ,D we obtain the valid in-
equalities (3.7) from model T+ for the given node and degree,

D
∑

d=m

d · yd
i =

∑

{i,j}∈E(i)

D
∑

d=m

D
∑

q=1

z
dq

{i,j} ≤
∑

{i,j}∈E(i)

{

D
∑

d=m

(

t
di
{i,j} + t

d
{i,j}

)

+

D
∑

d=m+1

t
dj

{i,j}

}

The domain constraints, 0 ≤ tm{i,j} ≤ 1, {i, j} ∈ E, 2 ≤ m ≤ D, are obvious by

using the linking equality (4.9c). As for the domain constraints, 0 ≤ tmk
{i,j} ≤ 1,

{i, j} ∈ E, 2 ≤ m ≤ D, k = i, j, they are easy to obtain by using the equalities
(4.9a) for k = i (or equalities (4.9b) for k = j) together with the constraints
(4.2) and the relaxed domain constraints on the x{i,j} variables.

As a corollary to the last proposition we have

Corollary 3.4. The projection of the set of feasible solutions of the linear pro-

gramming relaxation of Z+ on the subspace defined by the variables x, y and t

is contained in the set of feasible solutions of the linear programming relaxation

of the model T.

Note that, in the proof of Proposition 3.3, we only made use of constraints (4.3)
of model Z+ to obtain the valid inequalities (3.7) of the lifted model T+. It is
also not difficult to observe that in the presence of the valid inequalities (4.5)
on model Z+, we still obtain a valid model for the problem by using only the
weaker constraints (1.2) instead of constraints (4.3). Thus, Corollary (3.4) also
holds if we use this weaker model instead of the stronger model Z+. Although
reducing the dimension of the model Z+ by removing the constraints (4.3), a
few computational results showed us that, when solving the problem, the CPU
times obtained with this weaker model are usually higher than the CPU times
obtained with the stronger model and we omit it from the results analysis in
the next section.

We end this section with a figure (see Figure 2) summarizing the relation be-
tween all the proposed models, in terms of linear programming relaxations.
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V

V+

T

T+

Z

Z+

Figure 2: Relation between the different models (arrow direction: from the weaker model to
the stronger model).

4. Computational Results

In this section we anaylse computational results obtained to compare the two
versions of the classes of models V , T and Z . The maximum CPU time to
obtain the optimal solutions for the integer models and the respective linear
programming relaxations was set to 7200 seconds. Each test run was performed
on a single core of an Intel Xeon E5540 or E5649 machine both with 2.53 GHz.
Preliminary tests showed that both machines have nearly the same performance
with respect to our type of experiments. The memory limit per test run was set
to 6 GB. We used IBM ILOG CPLEX 12.5 as the LP solver and branch-and-cut
framework. All CPLEX parameters were left at their default settings except
the MIP Emphasis parameter which was set to OPTIMALITY. In previous
studies in similar problems, we have obtained slightly better results (lower CPU
times) when this parameter was set to OPTIMALITY instead of the default
setting BALANCED (feasibility and optimality). For the current paper, we did
the same testing on some ”easy” and ”hard” instances and the conclusion was
nearly the same. In the problem under study, we find that it is better that
CPLEX spends time on proving optimality, rather than on proving optimality
as well as searching for more feasible solutions. In most of the cases, the optimal
solution is found earlier but it is difficult to prove its optimality, so the pure
OPTIMALITY setting works (slightly) better

4.1. Data Generation

4.1.1. The Instances

Wireless mesh networks based on WiFi have been considered a cost-effective
solution mainly for rural and remote areas where the deployment of wired net-
works is too expensive both from a revenue and a technical point of view (see
[2, 8, 18, 17]). In these references, the deployment scenarios are characterized by
a few tens of nodes at most. In this paper, we have used a data set with sparse
instances with 100 nodes. We have generated sparse graphs since, in realistic
wireless based situations (again, see see [2, 8, 18, 17]), for many pairs of nodes,
either there exists an obstacle between them or the distance between them is
greater than the distance range of any available type of wireless link system.
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In order to generate instances with realistic properties, the nodes generation
basically consists in scattering the nodes in a square grid, avoiding the areas
where circle shaped obstacles have been randomly placed. The radius of each
circle is a random integer between two fixed given values.

We tested instances with 0, 5, 10 and 15 obstacles. Instances with no obstacles
correspond to ”free areas” (see Figure 3a) where the only limitation is the
distance between the two points. In conclusion, for each instance, only the
edges that correspond to a distance no greater than the maximum distance
range for any link to work (see the next subsection) and that do not ”cross”
any obstacle, are considered. This leads to instances with different quantities of
edges (therefore, densities) in the complete set of instances for our experiment.

(a) A ”free area” instance. (b) An instance with 10 obstacles.

Figure 3: Instances examples.

Although these topologies were created based on wireless scenarios, where Cs
ij

are the same for every link {i, j}, we have used them also in the more general
cases where Cs

ij vary with the distance for each {i, j} (see the next section).

4.1.2. The Links

We have considered three types of systems (I, II and III, ordered in cost increas-
ing order) that differ in terms of the respective cost and distance range. We
have also considered a distance range (when there is no interference) of 15 for
type I and 25 for types II and III.

Three costs configurations (see Table 1, configurations α1, α2 and α3) have been
considered for the wireless-based configurations. Note that, the upgrading cost

from one system type to the next (fII − fI and fIII − fII) increases from one
configuration to the next.

Consider δij as the euclidean distance between nodes i and j. In order to further
examine the behavior and strength of our models, we also have considered a
different type of costs configuration (see Table 1, configurations α4 and α5)
where the costs are given as follows: the cost of the cheapest type of system is
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exactly the euclidean distance between the endnodes, given by δij for each pair
of node i and j, whereas the other two system costs are obtained by adding a
concave upgrading cost to the previous one. We call these ”euclidean-based”
configurations.

System typesCost configurations
type I type II type III

α1 5 7 8
Wireless-based α2 5 8 10

α3 5 9 12
α4 δij δij + 20 δij + 30

Euclidean-based α5 δij δij + 40 δij + 70

Table 1: Cost Configurations (fI, fII, fIII).

As explained in section 2.1, the distance range is reduced if the number of links
on one (or both) of the endnodes of the link (where the system is to be installed)
is above a certain value. The maximum degree, D, is given by the number of
overlapping frequencies that the operator wants to use. Then, we consider two
generic degree parameters D1 and D2, such that D1 < D2 < D, to define
two different maximum degrees of each type of system on each pair of nodes i

and j (corresponding to two different reduced distance ranges). Based on these
parameters, we define :

• Systems of type I require a maximum degree of D2 if δij ≤ 5 and a
maximum degree of D1 if 5 < δij ≤ 15;

• Systems of type II require a maximum degree of D if δij ≤ 5, a maximum
degree of D2 if 5 < δij ≤ 15 and a maximum degree of D1 if 15 < δij ≤ 25;

• Systems of type III require a maximum degree D if δij ≤ 15 and a maxi-
mum degree D2 if 15 < δij ≤ 25.

We tested three degree configurations (D1, D2, D) as it is depicted in Table 2.

Degree Configuration D1 D2 D

β1 2 3 4
β2 2 3 5
β3 2 4 5

Table 2: Degree Configurations (D1, D2, D).

In the next sections, the gap between the value of a generic integer model (Int)
and its linear programming relaxation (LPRel), is determined as

V (Int)− ⌈V (LPRel)⌉

V (Int)

where ⌈·⌉ is the usual ”integer rounding up” operator.
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4.2. Analysis of the wireless-based cost configurations.

In this section we analyse the results obtained for the wireless-based cost con-
figurations α1, α2 and α3. In the next section we analyse the results obtained
for the euclidean-based cost configurations α4 and α5.

Although we have generated instances with densities from 6% to 18% (the den-
sity is determined as the number of edges in the instance, over the number of
edges in a complete graph with the same number of nodes), for the present
analysis we only report on instances with low-densities, between 6% and 9%
(corresponding to 0, 5 or 10 obstacles). The reason why we do not present the
results of the high-density instances is because the linear programming gaps are
close to zero for all models, even for the models producing worse CPU times.

Table 3 presents the results for the linear programming relaxation of all the
models whereas Table 4 presents the results about obtaining the optimal integer
solution. The first three columns of both tables identify the cost configuration,
degree configuration and number of obstacles. In Table 3, the next six columns
present the average gaps (in percentage) and the last six columns present the
median CPU times (in seconds) of all models. In Table 4, the columns 4 to
8 present the median CPU times (in percentage) for all models and the next
eight columns give information about the average percentage of nodes for each
degree value and the average percentage of system links in the optimal solution
obtained with model Z+. We use the median value instead of the average to
evaluate the CPU times since a single abnormal running time does not affect
the median value whereas it can significantly affect the average value.

4.2.1. Wireless-based cost configurations: Linear Programming results.

The median CPU times in Table 3 can be considered negligible since the median
times to obtain the linear programming bounds are at most 2 seconds for all
models. We observe that, as the upgrading costs increase (from configuration
α1 to α3) the gaps increase for all models. Also, we observe bigger gaps for
instances with more obstacles. This fact becomes more obvious when we com-
pare the results for the ”free area” instances (0 obstacles) against the results for
instances with obstacles. Note that the number of obstacles is related with the
density of the instance - more obstacles, lower density. Apparently, the degree

configurations does not seem to have a relevant effect on the gap variation.

The results also show that the gaps are small (less than 5%) for all models.
Comparing model classes, the two variants V and T have the same gap which
is always worse than the gap obtained with the weakest model in class Z (recall
that there is no theoretical relationship between the linear programming bound
given by model Z and the linear programming bounds given by models V and
T ). Clearly, the stronger model in each class (the one with valid inequalities
added) always produces a smaller gap (by at least 1%) than the other variant.
An interesting situation is that the model T+ produces almost always the same
gap as model Z+ being outperformed only in the case where the degree config-
uration is β3. In some sense this indicates that the information given by the
lower degree node (in variables z

pq

{i,j}) is in general not relevant. However, as

we have pointed out before, this extra information leads to models such that
the constraints linking the two sets of variables, ydi and z

pq

{i,j}, can be written as
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Average LP gaps Median CPU times
cost deg. obst. V V+ T T+ Z Z+ V V+ T T+ Z Z+

0 1.5 0.6 1.5 0.2 1.0 0.2 1 1 1 1 0 1
β1 5 1.8 0.8 1.8 0.3 1.3 0.3 0 1 1 1 0 1

10 1.8 0.7 1.8 0.3 1.2 0.3 1 1 1 1 0 1

0 1.5 0.6 1.5 0.2 1.0 0.2 1 1 1 1 1 1
α1 β2 5 1.9 0.8 1.9 0.3 1.3 0.3 1 1 1 1 0 1

10 1.9 0.7 1.9 0.3 1.2 0.3 1 1 1 1 1 1

0 1.5 0.7 1.5 0.4 1.2 0.3 1 1 1 1 1 1
β3 5 1.8 0.8 1.8 0.5 1.4 0.4 1 1 1 1 1 1

10 1.9 0.8 1.9 0.5 1.4 0.4 1 1 1 1 1 1

0 2.3 1.0 2.3 0.3 1.6 0.3 1 0 1 1 0 1
β1 5 2.7 1.2 2.7 0.3 1.9 0.3 1 0 1 1 0 1

10 2.8 1.2 2.8 0.4 1.9 0.4 1 1 1 1 0 1

0 2.4 1.0 2.4 0.3 1.6 0.3 1 1 1 1 1 1
α2 β2 5 2.8 1.2 2.8 0.3 1.9 0.3 1 1 1 1 0 1

10 2.9 1.2 2.9 0.4 1.9 0.4 1 1 1 1 1 2

0 2.4 1.0 2.4 0.6 1.8 0.4 1 1 1 2 1 1
β3 5 2.8 1.2 2.8 0.8 2.2 0.5 1 1 1 1 0 1

10 3.0 1.3 3.0 0.9 2.2 0.6 1 1 1 1 1 1

0 2.9 1.3 2.9 0.5 2.1 0.5 1 1 1 1 0 1
β1 5 3.6 1.6 3.6 0.5 2.6 0.5 1 0 1 1 0 1

10 3.7 1.6 3.7 0.6 2.5 0.6 1 0 1 1 0 1

0 3.1 1.3 3.1 0.5 2.1 0.5 1 1 1 1 1 1
α3 β2 5 3.7 1.6 3.7 0.5 2.6 0.5 1 1 1 1 1 1

10 3.9 1.6 3.9 0.6 2.5 0.6 1 0 1 1 1 1

0 3.1 1.4 3.1 0.8 2.3 0.6 1 1 1 1 1 1
β3 5 3.6 1.7 3.6 1.1 2.9 0.7 1 1 1 1 0 1

10 4.0 1.8 4.0 1.1 2.9 0.8 0 1 1 1 1 1

Table 3: Linear programming relaxation results for the wireless-based cost configura-
tions.

equalities and are fewer than in the models of the other classes. As we see in
the next subsection this may explain the observed CPU times for obtaining the
optimal integer solution.

4.2.2. Wireless-based configurations: Integer Programming results.

The median CPU times in Table 4 are in general bigger for each model when
using the degree configuration β3. The instances tested with this degree config-
uration are in general harder to solve and this might be related with the fact
that β3 was the only degree configuration where the linear programming gaps
of model Z+ were strictly better than the gaps of model T+.
Clearly, for each class, the model with the best linear programming bound was
the fastest. These models have more constraints than the other model in its
class but, the lower CPU times may be explained by the fact that they provide
better linear programming bounds among the models of the class.
Although the difference is small,the model Z+ takes less CPU time than model
T+ to obtain the optimal integer solutions (but still, there were instances where
model T+ performed faster than model Z+). In every solution there is no node
with degree equal to 5; the majority of the nodes (approximately 94%) has a
degree value of 2, whereas approximately 4% are leaf nodes. Only for the de-
gree configuration β3 we find nodes with degree equal to 4 in the solution. In
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Config. Median CPU time Degrees Links
cost deg. obst. V V+ T T+ Z Z+ 1 2 3 4 5 I II III

0 363 6 306 6 19 7 4.1 93.8 2.1 0.0 - 79.3 19.2 1.5

β1 5 250 4 701 9 12 6 4.2 93.6 2.2 0.0 - 78.7 19.8 1.5

10 78 3 135 3 11 2 4.5 92.9 2.5 0.0 - 79.8 17.9 2.3

0 262 5 424 8 24 6 3.8 94.3 1.8 0.0 0.0 79.3 19.2 1.5

α1 β2 5 579 11 637 5 15 5 4.0 94.0 2.0 0.0 0.0 78.7 19.8 1.5

10 148 3 339 7 13 2 4.6 92.7 2.6 0.0 0.0 79.7 18.2 2.1

0 1107 42 1664 53 87 23 4.0 94.2 1.7 0.2 0.0 79.4 18.9 1.7

β3 5 814 34 1785 53 109 33 4.4 93.4 2.0 0.2 0.0 79.1 18.9 2.0

10 371 21 983 26 120 14 4.5 93.1 2.2 0.2 0.0 79.9 17.7 2.4

0 306 8 537 13 25 3 3.8 94.3 1.8 0.0 - 79.0 20.2 0.8

β1 5 250 4 429 10 12 4 4.2 93.6 2.2 0.0 - 78.4 20.7 0.9

10 105 5 284 4 15 2 4.2 93.6 2.2 0.0 - 79.6 18.5 1.9

0 488 6 696 9 18 5 3.9 94.2 1.9 0.0 0.0 79.0 20.2 0.8

α2 β2 5 609 4 785 5 16 4 4.1 93.8 2.1 0.0 0.0 78.4 20.7 0.9

10 127 2 853 5 31 3 4.4 93.3 2.4 0.0 0.0 79.6 18.5 1.9

0 1326 38 2252 53 106 19 3.7 94.8 1.3 0.2 0.0 79.0 20.2 0.8

β3 5 1338 22 2363 48 89 25 4.2 93.9 1.6 0.3 0.0 78.7 20.1 1.2

10 823 24 1000 50 101 23 4.6 93.1 1.9 0.4 0.0 79.7 18.3 2.0

0 588 8 330 9 20 8 3.8 94.5 1.8 0.0 - 79.0 20.2 0.8

β1 5 491 7 1021 5 20 4 4.0 94.0 2.0 0.0 - 78.4 20.7 0.9

10 333 3 220 4 20 6 4.1 93.8 2.1 0.0 - 79.6 18.5 1.9

0 487 6 956 6 24 6 3.8 94.3 1.8 0.0 0.0 79.0 20.2 0.8

α3 β2 5 440 6 1701 5 14 2 4.2 93.6 2.2 0.0 0.0 78.4 20.7 0.9

10 216 3 546 4 25 4 4.5 93.1 2.5 0.0 0.0 79.6 18.5 1.9

0 1348 25 1943 61 96 27 3.8 94.7 1.4 0.2 0.0 79.0 20.2 0.8

β3 5 796 34 2779 40 95 16 4.1 94.0 1.7 0.2 0.0 78.5 20.6 0.9

10 695 26 828 42 77 13 4.5 93.2 2.0 0.3 0.0 79.7 18.3 2.0

Table 4: Integer programming results for the wireless-based cost configurations.

terms of system links, there is a majority of approximately 79% of type I system
links. Although, in average, the percentage is very similar among the different
scenarios, we observe that, as the number of obstacles increases (the instances
get denser) the number of type III system links increases and the number of
type II system links decreases.

4.3. Analysis of the euclidean-based cost configurations.

In this section we analyse the more general cost function corresponding to cost
configurations α4 and α5. For this case we use the complete set of generated
instances, that is, instances with low-densities, between 6% and 9% (correspond-
ing to 0, 5 or 10 obstacles) used in the previous results, as well as instances with
high-densities, between 10% and 18% (corresponding to 5, 10 or 15 obstacles).

Tables 5 and 6 are organized in a similar way as Tables 3 and 4, except for the
first column which identifies the density (L for low density instances and H for
high density instances).

4.3.1. Euclidean-based cost configurations: Linear Programming results.

The median CPU times in Table 5 can once again be considered negligible (less
than 3 seconds). However, for this class, the linear programming gaps increase
considerably. This can be explained by the fact that the links now are more
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Average LP gap Median CPU time
dens. cost deg. obst. V V+ T T+ Z Z+ V V+ T T+ Z Z+

0 8.2 3.1 8.2 0.8 5.4 0.8 0 0 1 1 0 1
β1 5 9.7 4.0 9.7 1.3 6.5 1.3 0 0 0 1 0 1

10 10.2 3.8 10.2 1.1 6.5 1.1 0 0 1 1 0 1

0 9.0 3.1 9.0 0.8 5.5 0.8 0 0 1 1 0 1
α4 β2 5 10.5 4.0 10.5 1.3 6.6 1.3 0 0 1 1 0 1

10 11.0 3.8 11.0 1.1 6.7 1.1 0 0 1 1 0 1

0 9.1 3.6 9.1 2.0 6.8 1.4 0 0 1 1 0 1
β3 5 10.6 4.5 10.6 2.7 7.9 2.1 0 0 1 1 0 1

10 11.2 4.6 11.2 2.7 8.5 1.9 0 0 1 1 0 1
L

0 11.0 4.3 11.0 1.4 7.6 1.4 0 0 1 1 0 1
β1 5 13.3 5.6 13.3 1.8 9.3 1.8 0 0 1 1 0 1

10 13.9 5.6 13.9 1.7 9.2 1.7 0 0 0 1 0 1

0 11.9 4.3 11.9 1.4 7.6 1.4 0 0 1 1 0 1
α5 β2 5 14.1 5.6 14.1 1.8 9.3 1.8 0 0 1 1 0 1

10 14.8 5.6 14.8 1.7 9.2 1.7 0 0 1 1 0 1

0 12.0 4.8 12.0 2.7 9.1 1.9 0 0 1 1 0 1
β3 5 14.2 6.3 14.2 3.9 11.0 2.9 0 0 1 1 0 1

10 15.1 6.3 15.1 3.8 11.5 2.7 0 0 1 1 0 1

5 6.2 3.9 6.2 0.7 6.0 0.7 1 1 1 1 1 1
β1 10 6.3 3.6 6.3 0.7 5.8 0.7 1 1 1 1 1 1

15 7.2 4.3 7.2 0.6 6.8 0.6 0 0 1 1 0 1

5 6.6 3.9 6.6 0.7 6.0 0.7 1 1 1 2 1 2
α4 β2 10 6.6 3.6 6.6 0.7 5.8 0.7 1 1 1 1 1 1

15 7.6 4.3 7.6 0.6 6.8 0.6 1 1 1 1 1 1

5 6.9 4.0 6.9 1.2 6.8 0.8 1 1 1 2 1 2
β3 10 6.9 3.7 6.9 1.2 6.6 0.7 1 1 1 2 1 1

15 7.7 4.4 7.7 1.5 7.8 0.7 0 1 1 1 0 1
H

0 6.5 4.2 6.5 0.8 6.2 0.8 1 1 1 1 1 2
β1 5 6.3 3.6 6.3 0.8 5.7 0.8 1 1 1 1 1 1

10 8.8 5.4 8.8 1.1 8.1 1.1 0 0 1 1 0 1

0 6.8 4.2 6.8 0.8 6.2 0.8 1 1 2 2 1 2
α5 β2 5 6.7 3.6 6.7 0.8 5.7 0.8 1 1 1 1 1 1

10 9.1 5.4 9.1 1.1 8.1 1.1 0 1 1 1 1 1

0 7.2 4.2 7.2 1.2 7.0 0.9 1 1 2 2 1 2
β3 5 6.9 3.6 6.9 1.0 6.4 0.7 1 1 1 1 1 1

10 9.0 5.4 9.0 1.6 8.8 0.9 1 1 1 1 0 1

Table 5: Linear programming relaxation results for the euclidean-based cost configu-
rations.

expensive. Notice that in the wireless case, the gaps increase when the upgrading
costs increase. Also, as in the previous case, the gaps increase with the number
of obstacles in the instance (with more obstacles in the instances the densities
get lower). This can be observed when we compare the gaps obtained with
the low density instances against high density instances: the gaps of the latter
are lower than the gaps of the former. The upgrading costs in the two cost
configurations, α4 and α5, seem to have a similar effect as in the wireless-based
cost configurations: gaps increase as upgrading costs increase.

Although the gaps are now higher than in the wireless case, models T+ and Z+
obtain the best gaps as before (again model Z+ outperformed model T+ only
in the β3 degree configuration).
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4.3.2. Euclidean-based cost configurations: Integer Programming results.

In this case, the CPU times in Table 6 are much higher than in the wireless-
based case, but the main conclusion is similar to the previous case. The degree
configuration β3 instances are more difficult to solve to optimality than any of
the other degree configurations. For this degree configuration there were even
some instances (low density with 10 obstacles) where for the weaker models
(models V and T ) an optimally proven integer solution could not be found
within the time limit of 7200 seconds. The high density instances were usually
solved faster than the low density instances.

Config. Median CPU time (seconds) Degrees Links
dens. cost deg. obst. V V+ T T+ Z Z+ 1 2 3 4 5 I II III

0 194 7 347 3 18 2 4.2 93.7 2.2 0.0 - 79.1 19.2 1.7
β1 5 357 18 372 16 18 6 5.1 91.8 3.1 0.0 - 79.0 18.1 2.9

10 270 6 542 5 17 2 5.3 91.5 3.3 0.0 - 79.6 17.5 2.8

0 530 6 437 7 19 2 4.2 93.7 2.2 0.0 0.0 79.0 19.4 1.6
α4 β2 5 749 19 742 15 21 6 5.1 91.8 3.1 0.0 0.0 79.0 18.1 2.9

10 387 6 1188 3 16 2 5.3 91.5 3.3 0.0 0.0 79.6 17.5 2.8

0 2198 55 4769 78 80 32 4.4 93.4 1.9 0.2 0.0 79.0 19.3 1.7
β3 5 5781 66 4194 76 114 49 5.3 91.8 2.5 0.4 0.0 79.1 18.0 2.9

10 4524 36 2119 45 137 26 5.3 91.7 2.7 0.3 0.0 79.7 17.5 2.8
L

0 357 3 300 8 15 4 4.0 94.0 2.0 0.0 - 79.0 20.2 0.8
β1 5 603 10 647 8 17 7 4.3 93.4 2.3 0.0 - 78.3 20.9 0.8

10 382 5 515 3 12 2 4.6 92.7 2.6 0.0 - 79.4 18.8 1.7

0 876 5 643 5 17 3 4.0 94.0 2.0 0.0 0.0 79.0 20.2 0.8
α5 β2 5 1146 11 1278 13 17 9 4.3 93.4 2.3 0.0 0.0 78.3 20.9 0.8

10 2262 3 440 3 18 2 4.6 92.7 2.6 0.0 0.0 79.4 18.8 1.7

0 3955 45 2692 54 56 16 4.0 94.1 1.8 0.1 0.0 79.0 20.2 0.8
β3 5 6246 46 5102 61 65 37 4.3 93.5 2.1 0.1 0.0 78.4 20.8 0.8

10 6447 47 4427 52 91 14 4.7 92.8 2.2 0.3 0.0 79.6 18.5 1.9

5 399 4 504 5 27 5 6.1 89.8 4.1 0.0 - 98.1 1.8 0.1
β1 10 127 2 239 3 12 3 7.1 87.8 5.1 0.0 - 96.6 3.3 0.1

15 189 1 87 2 9 2 6.4 89.1 4.4 0.0 - 95.8 3.7 0.4

5 1002 6 562 10 19 9 6.2 89.6 4.2 0.0 0.0 98.1 1.8 0.1
α4 β2 10 485 2 949 3 7 2 7.0 88.0 5.0 0.0 0.0 96.6 3.3 0.1

15 125 1 263 2 11 2 6.4 89.1 4.4 0.0 0.0 95.8 3.7 0.4

5 1985 39 5155 35 276 7 6.2 90.0 3.3 0.4 0.0 98.1 1.8 0.1
β3 10 863 7 1590 13 61 3 7.2 88.3 3.7 0.8 0.0 96.7 3.1 0.1

15 282 7 749 8 36 2 6.2 89.8 3.8 0.2 0.0 95.7 4.0 0.2
H

5 362 3 381 6 15 5 5.9 90.2 3.9 0.0 - 98.2 1.8 0.0
β1 10 138 2 253 4 11 2 7.1 87.8 5.1 0.0 - 96.9 3.1 0.0

15 22 1 90 2 6 2 6.4 89.1 4.4 0.0 - 96.1 3.6 0.3

5 341 4 1064 6 20 5 6.0 90.0 4.0 0.0 0.0 98.2 1.8 0.0
α5 β2 10 308 2 566 4 7 2 7.0 88.0 5.0 0.0 0.0 96.9 3.1 0.0

15 175 1 445 2 6 2 6.6 88.9 4.6 0.0 0.0 96.1 3.6 0.3

5 2837 17 1381 15 86 7 6.1 90.1 3.4 0.3 0.0 98.2 1.8 0.0
β3 10 576 3 860 4 51 3 7.3 87.9 4.2 0.6 0.0 96.9 3.1 0.0

15 143 2 630 2 33 2 6.8 88.7 4.3 0.2 0.0 96.1 3.7 0.2

Table 6: Integer programming results for the euclidean-based cost configurations.

Again, the strongest model (in terms of linear programming bounds) in each
class is the fastest and model Z+ takes less CPU time than model T+ to ob-
tain the optimal integer solutions (although there were instances when model
T+performed faster than model Z+). The optimal solutions obtained for the
low density instances have a similar analysis as the wireless-case instances. As
for the solutions obtained for the high density instances again there is no node
with degree equal to 5 but now the majority of the nodes (approximately 89%)
has a degree value of 2, whereas approximately 6% are leaf nodes. Only for the
degree configuration β3 we find nodes with degree equal to 4 in the solution.
In terms of system types, the number of type I system links in high density
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instances is bigger than in the previous case (low density cases), approximately
97%, which is natural since high density instances have more potential links to
choose.

In terms of system links, the number of type I links is bigger than in the pre-
vious case, approximately 97%, which is natural since these instances have less
potential links to choose. As the number of obstacles increase so do the number
of type II and type III system links.

As a final remark, these euclidean-based instances prove to be more difficult to
solve than the wireless-based ones justifying, in a certain sense, their inclusion
in the paper for studying the robustness of the models.

5. Conclusions

In this paper we have studied a problem that generalizes the Degree Constrained
Minimum Spanning Tree Problem by considering constraints on the degree of
the nodes that vary with the ”type” of edges adjacent to the node in the solu-
tion. This problem is motivated by the network design of point-to-point wireless
mesh networks where different types of transmission systems may be installed
in each link. We have proposed three classes of linear programming models
that differ on the set of variables that identify the type of transmission sys-
tem to be installed. For each of these classes we considered a basic model and
enhanced models obtained by lifting constraints and adding valid inequalities.
These models and the corresponding linear programming relaxations were com-
pared theoretically and through a computational point of view using instances
with 100 nodes and different scenarios. The test results showed that (i) the
model with valid inequalities of the third class should be chosen when the main
objective is to obtain the optimal integer solution and (ii) both the best models
in the second and third class can be used to obtain a good linear programming
relaxations bound when the main objective is, for example, to evaluate the qual-
ity of a known feasible solution.
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