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Abstract

Online social networks have become crucial to propagate information. Prominent use cases
include marketing campaigns for products or political candidates in which maximizing the ex-
pected number of reached individuals is a common objective. The latter can be achieved by
incentivizing an appropriately selected seed set of influencers that trigger an influence cascade
with expected maximum impact. In real-world settings competing influence spreads need to be
considered frequently. These may, e.g., stem from marketing activities for a substitute product
of a different company or bad actors that spread (mis-)information about a political candidate.
This article focuses on competitive settings in which the seed individuals of one entity is already
known. Another entity wants to choose its seed set of individuals that triggers an influence cas-
cade of maximum impact. The propagation process is modeled by a variant of the probabilistic
independent cascade model. An algorithmic framework based on a Benders decomposition is
developed that also employs preprocessing and initial heuristics. This framework is used within
a sample average approximation scheme that allows to approximate the exact objective function
value. The algorithms are tested on real-world instances from the literature and newly-obtained
ones from Twitter. A computational study reports on the algorithms’ performance next to pro-
viding further insights. The latter are based on analyzing expected losses that are caused by
competition, the gain from solving subproblems to optimality using the Benders decomposition
based algorithm, and the influence of different seed set choices of the first entity.

Keywords: competitive influence maximization, social networks, integer linear programming,
Benders decomposition

1 Introduction
Online social networks have evolved to important communication channels over the last decades
and are used by millions of people. The digital records of such networks allow to reveal relationship
structures between individuals and to observe or predict user attributes and interests from their
individual behavior [23]. This knowledge is of notable interest for firms and other entities that
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use social networks for marketing campaigns. Such campaigns can benefit from the user’s network
values [12] and word-of-mouth effects and therefore be considerably more effective than traditional
approaches [37]. Also social influence, which may cause individuals to adjust their opinions based
on the opinions of their peers, can be supportive to stimulate certain consumer decisions [24] or
even to sway political election outcomes [4]. Social networks may also be used by bad actors,
who spread misinformation and so-called fake news. The spread of such misinformation has been
identified as among the world’s top global risks by the World Economic Forum [14], with economic
cost caused by it estimated to be at least $78 billion per year [30].

The decentralized viral spread of information in social networks such as news, opinions or
advertisements is also referred to as influence propagation. Influence cascades are triggered by the
injection of new information which is performed, for instance, by network nodes such as (paid)
influencers or, more generally, individuals that are incentivized to do so. The influencer marketing
industry is estimated to be worth up to $16 billion in 2020 [36].

A common goal is to maximize the number of network nodes that are covered by an influ-
ence cascade, e.g., to increase awareness or expected sales. Variants of the underlying influence
maximization problem (IMP) introduced by Kempe et al. [19] have recently received significant
attention from the computer science and operations research communities. IMPs aim to identify a
seed set of initially influenced nodes that trigger an influence cascade of maximum impact. Seed
set members are assumed to be influenced by external means such as discounts or other mone-
tary incentives. The size of a seed set is therefore typically constrained by cardinality. Different
propagation models formalizing the influence propagation process have been considered, see, e.g.,
[17] for a comprehensive survey. The majority of articles consider, however, either the probabilistic
independent cascade model or the deterministic linear threshold model, see, e.g., [19, 20]. Kempe
et al. [19] showed that the IMP is NP-hard under each of these two propagation models and that its
objective function is monotone and submodular. The latter properties triggered the development
of approximation algorithms for the IMP (see, e.g., Chen [7] and the references therein) which
are based on the seminal work of Nemhauser et al. [29]. Topological metrics such as betweenness
centrality of the underlying social network have been used to develop heuristic methods without
performance guarantee [28, 38]. Only recently, variants of the IMP have also been tackled by exact
solution methods based on integer linear programming (ILP), see, e.g., [13, 16, 34, 39].

All so-far mentioned variants of the IMP neglect the existence of competition by assuming a
single, information propagating entity. This limits their applicability since competing entities often
exist in practice. These may refer, for instance, to companies that promote substitute products
or opposing political parties that try to convince indecisive voters. The influence propagation of
competing entities is sometimes modeled implicitly by ubiquitous discount factors that affect the
opinions of influenced individuals during the propagation process [35]. Frequent assumptions in the
sparse literature related to IMPs with competition include the existence of two competing entities
(to which we refer to as leader and follower) and that the seed set of the leader is known in advance.
Thus, the follower aims to make an optimal decision as a reaction to the leaders choice. Objectives
that have been considered include maximizing the influence of the follower [3, 27] or minimizing
the one of the leader [6, 39]. The latter variant is sometimes referred to as rumor blocking. Also
the perspective of social network operators that may try to maximize the overall welfare of their
sponsoring customers has been considered [5]. Other problem variants focus on time-critical issues
(e.g., protection against leakage) during the propagation process [31].

No consistent naming conventions and standard benchmark problems have been established
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for IMPs with competition yet. One common requirement is, however, to correspondingly extend
a particular influence propagation model and in particular include certain tie-breaking rules that
govern the outcome of a situation in which a network individual is simultaneously influenced by
different entities; see Chen et al. [9] for an overview of so-far considered tie-breaking rules. Most of
the articles treating IMPs with competition follow the approach of Kempe et al. [19] and develop
greedy 1−1/e approximation algorithms to solve the respective problem variants, see, e.g., [6, 27, 39].
To our knowledge, Keskin and Güler [21] who develop a time-indexed formulation based on the
linear threshold model are the only ones who consider ILP methods for IMPs with competition
explicitly.

1.1 Scientific contribution

As discussed above, deriving ILP formulations and developing exact solution algorithms based on
them has been almost neglected in the literature related to IMPs that consider competition. In this
paper, we study the competitive influence maximization problem (CIMP) based on the competitive
independent cascade model (CIC-M) and make the following contributions:

• We show that the related rumor blocking problem can be solved as a slightly modified CIMP
(Section 2).

• We propose a new time-indexed ILP formulation for the CIMP (Section 3.1).

• We show that the CIMP can be seen as a stochastic variant of the maximum covering location
problem and propose a Benders decomposition based solution algorithm following a recently
proposed, highly successful approach for the latter problem (Sections 3.2 and 3.3).

• We develop and implement an algorithmic framework based on this Benders decomposition
algorithm that also employs preprocessing and initial heuristics. To approximate the exact
objective function value, our algorithms are also embedded into a sample average approxima-
tion scheme (Section 4).

• We test our algorithmic framework on instances known from the literature and also propose
a new set of benchmark instances based on data of the social network Twitter. Besides
evaluating the performance of our algorithms, we particularly focus on managerial insights
such as the expected losses caused by competition (Section 5).

2 Problem definition
The competitive influence maximization problem (CIMP) considered in this article is defined on
a simple directed graph G = (V,A) modeling a social network. While the network participants
correspond to node set V , their relations are represented by arc set A ⊆ V ×V . A value pij ∈ [0, 1] is
associated with each arc (i, j) ∈ A that represents the probability that an active node i successfully
activates node j. The term active indicates that an individual i adopts a product or information and
starts exerting influence by sharing that information with its neighbors j along arcs (i, j) ∈ A. The
CIMP considers two competing entities denoted by leader and follower and adopts the frequent
assumption that the seed set L ⊂ V of the leader is known (e.g., as in [3, 6, 27]). Having full
information about the leader’s decision, the follower aims to identify a seed set F ∗ ⊆ V \ L of
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cardinality at most k ∈ N that maximizes the expected number of activated nodes triggered by this
seed set, i.e.,

F ∗ = argmaxF⊆V \L,|F |≤k σ(L,F ).

Here, σ(L,F ) ∈ R+ denotes the expected number of nodes activated by follower seed set F when
assuming a leader seed set L under the following competitive independent cascade model.

Competitive independent cascade model (CIC-M) Extending the independent cascade
model, the propagation process of the CIC-M occurs in a discrete time setting in which only nodes
in seed sets L ⊂ V and F ⊆ V \ L are active at time zero. A node i activated at a certain
time step t immediately tries to activate all its neighbors j along arcs (i, j) ∈ A. If an attempt
of activating node j succeeds (which happens with probability pij), node j gets active at time
t + 1 and consequently tries to influence its neighbors. Each node can be activated either by an
influence cascade that originates from L or by an influence cascade triggered by F . Activated
nodes remain active and cannot be additionally activated by the other entity at a later point in
time. We break ties in favor of the leader in case of simultaneous activations of a node: If an
activation attempt is successful both from the leader and the follower at the same time t, the node
is assumed to be activated by the leader. Notice that an active node can try to activate each
neighbor only once during the propagation process, and that each activation attempt is assumed
to happen independently from all other activation attempts. The propagation process stops if no
node is activated in some time step.

In the following, we will use a discrete set of scenarios Ω instead of explicitly considering
activation probabilities pij , (i, j) ∈ A. Each scenario ω ∈ Ω is represented by a so-called live-arc
graph (V,Aω), Aω ⊆ A. Arc set Aω contains all arcs (i, j) for which an attempt of i to activate
j succeeds in scenario ω. Thus, we have |Ω| = 2|A| to include all possible outcomes and a specific
scenario ω ∈ Ω occurs with probability pω = Π(i,j)∈Aωpij · Π(i,j)∈A\Aω (1 − pij). We denote the
set of nodes activated by the follower seed set F depending on the leader seed set L in scenario
ω ∈ Ω by ρω(L,F ). An illustrative instance graph of the CIMP is shown in Figure 1a. For
simplicity we omit introducing precise influence probabilities and instead discuss two exemplary
live-arc graphs G1 = (V,A1) and G2 = (V,A2) together with corresponding propagation processes
based on leader seed set L = {1} and follower seed set F = {3} in Figures 1b and 1c. Influence
spread from the leader and the follower is shown using solid and dashed arcs, respectively, and
activation times are given next to the nodes. Non-activated nodes are marked with time t = ∞.
Note that |ρ1(L,F )| = 1 and |ρ2(L,F )| = 5 in our example. Further notice that the tie-breaking
rule of the CIC-M is indicated in Figure 1b, in which a tie at node 2 is broken in favor of the leader
at t = 1.

A benefit of considering discrete scenarios is that the propagation process is deterministic for
each of them. Moreover, for a fixed scenario ω ∈ Ω and given seed sets L and F , breadth-first-search
(BFS) can be used to efficiently calculate nodes activated by the leader and follower, respectively,
together with the corresponding activation times. Observation 1 which is based on Budak et al. [6]
draws conclusions from the particular case when F = ∅.
Observation 1. Let dω(L, i) denote the time when node i is activated by the leader in scenario
ω ∈ Ω if F = ∅, i.e., the length of a shortest path (measured in the number of arcs) in Gω from
node set L to node i. Assuming that dω(L, i) = ∞ if node i ∈ V is not reachable by the leader,
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Figure 1: Instance graph G and live-arc graphs G1 and G2, which also show the corresponding
influence spreads of the leader (solid, light blue arcs) and the follower (dashed, blue arcs) for seed
sets L = {1} and F = {3}, respectively.

the definition of CIC-M implies that the follower can only activate node i in scenario ω if there is
at least one seed node of the follower for which the length of a shortest path to i is smaller than
dω(L, i).

At first place, this observation enables us to neglect all decision variables that model the leader’s
propagation in the ILP formulations presented in Section 3. Additionally, it is the basis for observing
that the CIMP can be modeled as a classical IMP with marginal modifications. Finally, we observe
that the ability of efficiently pre-computing all nodes that are reachable by the leader if F = ∅
enables a transformation of the CIMP to the influence blocking maximization problem [18] (or
rumor blocking problem [6]). Here, we simply adapt the objective function such that only those
nodes appear therein. Clearly, the objective value of the CIMP then corresponds to the expected
number of nodes the follower prevents from getting activated by the leader.

Observe that the leader might represent an arbitrary number n ≥ 1 of competitors whose
seed sets Li, i = 1, . . . , n, are known a priori and which can be accumulated in a single seed set
L = L1 ∪ · · · ∪ Ln. We also note that only minor modifications would be necessary for applying
the algorithmic framework developed in the following to more general and likely more realistic
versions of the CIMP. In particular, we refer to variants in which the seed set is constrained by
budget rather than cardinality and with node-dependent costs for including an entity in a seed set.
Likewise, different values for the objective function coefficients of nodes (e.g., depending on the
“estimated relevance” of an entity) could be considered. To stay in line with the related literature
we do refrain from explicitly considering these aspects in the following. The flexibility to integrate
these aspects can, however, be seen as an additional advantage of the methods proposed in this
article compared to existing approximation algorithms whose tight approximation ratios would not
persist in more complex and realistic problem settings.

We conclude this section, by observing that it is also easy to see that the IMP is a special case of
the CIMP when L = ∅. Thus, the CIMP is NP-hard [19] and the evaluation of the function σ(L,F )
under the CIC-M is #P-hard [8]. Furthermore, function σ(L,F ) is monotone and submodular under
the CIC-M so that σ(L,F ∪{j})−σ(L,F ) ≥ σ(L,F ′∪{j})−σ(L,F ′) holds for any F ⊆ F ′ ⊆ V \L
and j ∈ V \ (L ∪ F ′), cf., [3].
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3 Stochastic integer linear programming formulations
In this section, we propose three stochastic ILP formulations for the CIMP. Starting from a stochas-
tic time-indexed formulation we establish a link to a stochastic variant of the maximal covering
location problem for which an exact reformulation based on Benders decomposition is presented.

3.1 Stochastic time-indexed model

Formulation (1) proposed in this subsection is based on time-indexed variables that indicate if
and at what time a node is activated by the follower. Similar time-indexed variables for the
leader’s propagation are avoided due to Observation 1 which allows to pre-compute all time points
Tω

i = {t ∈ N0 : t < dω(L, i)} at which the follower can activate node i ∈ V in scenario ω ∈ Ω.
Time-indexed binary variables yω

it, ∀t ∈ Tω
i , i ∈ V \ L, ω ∈ Ω, are used to indicate whether or not

node i gets activated at time t in scenario ω. Besides, formulation (1) uses binary variables zi,
∀i ∈ V \ L, that indicate whether or not node i is part of the follower’s seed set F .

(TI) max
∑

ω∈Ω
pω

∑

i∈V \L

∑

t∈T ω
i

yω
it (1a)

s.t.
∑

i∈V \L
zi ≤ k (1b)

zi = yω
i0 ∀i ∈ V \ L,∀ω ∈ Ω, (1c)

∑

(i,j)∈Aω ,
t−1∈T ω

i

yω
i(t−1) ≥ yω

jt ∀j ∈ V \ L,∀t ∈ Tω
j \ {0}, ∀ω ∈ Ω, (1d)

∑

t∈T ω
i

yω
it ≤ 1 ∀i ∈ V \ L,∀ω ∈ Ω, (1e)

yω
it ∈ {0, 1} ∀i ∈ V \ L,∀t ∈ Tω

i , ∀ω ∈ Ω,
zi ∈ {0, 1} ∀i ∈ V \ L.

The objective function (1a) maximizes the expected number of nodes activated by the follower’s seed
set whose cardinality is constrained by a given positive integer k in (1b). Constraints (1c) link the
seed set variables to the follower’s activation variables at time zero for each scenario. The follower’s
propagation for each scenario along a path in Gω is modeled in constraints (1d), i.e., node j can
only be activated in time step t if at least one incoming neighbor has been activated at time t− 1.
Equations (1e) ensure that each node can be activated at most once. Finally, notice that the binary
requirements on the activation variables can be relaxed to yω

it ∈ [0, 1], ∀i ∈ V \ L, t ∈ Tω
i , ω ∈ Ω,

since constraints (1c)-(1e) together with the objective function ensure integral values for these
variables.

3.2 Stochastic maximal covering location model

The latest activation times per node resulting from Observation 1 can be used to propose a for-
mulation that avoids the use of time-indexed variables. Following Güney et al. [16], we define the
reachability set Rω

i of node i ∈ V in scenario ω ∈ Ω as the set of nodes for which a path to i consist-
ing of less than dω(L, i) arcs exists in Gω. Thus, if a node j ∈ Rω

i is contained in the followers seed
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set, node i is activated by the follower in scenario ω. This point of view enables the formulation
of the CIMP as an instance of the maximum covering location problem (MCLP) [10]. This rela-
tion has also been used to model the IMP, e.g., in [16, 26]. The main difference when considering
competing entities is that the reachability sets need to be adapted according to the (given) leader’s
propagation. To keep this paper self-contained we will repeat the formulation of the MCLP, and
briefly discuss an existing reformulation based on Benders decomposition [2, 11, 16].

Let variables yω
i and zi indicate whether or not node i is activated by the follower in scenario

ω, and whether or not i ∈ F , respectively. Then, the CIMP can be formulated by

(COV) max
∑

ω∈Ω
pω

∑

i∈V \L
yω

i (2a)

s.t.
∑

i∈V \L
zi ≤ k (2b)

yω
i ≤ 1 (αω

i ) ∀i ∈ V \ L,∀ω ∈ Ω, (2c)
∑

j∈Rω
i

zj ≥ yω
i (βω

i ) ∀i ∈ V \ L,∀ω ∈ Ω, (2d)

yω
i ≥ 0 ∀i ∈ V \ L,∀ω ∈ Ω,
zi ∈ {0, 1} ∀i ∈ V \ L.

The objective function (2a) maximizes the expected number of the nodes triggered by the follower’s
seed set whose cardinality is constrained in (2b). Constraints (2d) ensure that the follower can only
activate a node by including at least one node from the corresponding reachability set in the seed
set. Variables yω

i , ∀i ∈ V , ω ∈ Ω, again attain integral values in optimal solutions, which is enforced
by the objective function together with constraints (2d).

3.3 Reformulation based on Benders decomposition

Formulation COV is appealing for Benders decomposition [2] since it reduces to a linear program
(LP) for fixed values z̄ of variables z. We project out variables yω

i , ∀i ∈ V , ∀ω ∈ Ω, and instead
enforce Benders optimality cuts obtained by solving the dual of the latter LP, see Güney et al. [16]
for details. Using µω to denote the contribution of scenario ω ∈ Ω to the objective function, we
obtain the exact reformulation

(BEN) max
∑

ω∈Ω
pωµω (3a)

s.t.
∑

i∈V \L
zi ≤ k (3b)

µω ≤ Cω(z̄) +
∑

j∈V \L
cω

j (z̄)zj ∀z̄ ∈ P (z), ∀ω ∈ Ω, (3c)

µω ≥ 0 ∀ω ∈ Ω,
zi ∈ {0, 1} ∀i ∈ V \ L.

The objective function (3a) maximizes the expected contribution of all scenarios, while constraint
(3b) restricts the follower’s seed set cardinality by a given value k. Inequalities (3c) correspond to
Benders optimality cuts which are defined for each scenario ω ∈ Ω and each extreme point z̄ of the

7



polyhedron P (z) := {z ∈ [0, 1]V \L : ∑i∈V \L zi ≤ k}. For one particular scenario ω ∈ Ω and extreme
point z̄ ∈ P (z), we obtain constant Cω(z̄) := ∑

i∈V ᾱ
ω
i and coefficients cω

j (z̄) := ∑
i:j∈Rω

i
β̄ω

i ,∀j ∈
V \L, where ᾱω

i and β̄ω
i are optimal values for the dual variables associated to constraints (2c) and

(2d), respectively. Similar to Güney et al. [16], for integer vectors z̄, constant Cω(z̄) corresponds to
the number of activated nodes |ρω(L,F )| triggered by follower seed set F = {i ∈ V \ L : z̄i = 1} in
scenario ω ∈ Ω. Coefficient cω

j (z̄) can be interpreted as the marginal gain of adding node j ∈ V \L
to seed set F in scenario ω, i.e., |ρω(L,F ∪ {j})| − |ρω(L,F )|.

4 Algorithmic framework
To solve the CIMP, we focus on the Benders reformulation BEN used within a branch-and-cut
framework. We do not report results obtained from the other formulations TI and COV because
in preliminary tests it turned out that they are not applicable to our large-sized instance set.
Since handling the exponential number of scenarios |Ω| = 2|A| is computationally not tractable for
reasonable graph sizes, we approximate the objective function by sample average approximation
(SAA) [22] in which only a randomly drawn subset Ω′ ⊂ Ω (based on Monte-Carlo sampling)
is considered in each SAA iteration. Consequently, the objective function (3a) is replaced by

1
|Ω′|

∑
ω∈Ω′ µω =: σ̂Ω′(L,F ), where ˆ indicates an estimator. The solutions, i.e., the seed sets,

obtained in each SAA iteration are evaluated a posteriori on a much larger set of scenarios Ω′′
with |Ω′′| � |Ω′|, and the solution which performs best on set Ω′′ is selected as estimated optimal
seed set F̂ ∗. The corresponding approximated expected objective value is denoted by σ̂Ω′′(L, F̂ ∗).
Sections 4.1-4.3 apply for each SAA iteration.

4.1 Preprocessing

We create the live-arc graphs Gω by a biased coin flipping procedure based on probabilities pij ,
∀(i, j) ∈ A, for all considered scenarios ω ∈ Ω′ in O(|A||Ω′|) runtime. We then compute and store
the reachability sets Rω

i for each node i ∈ V and scenario ω ∈ Ω′, requiring O(|V |2|Ω′|) memory.
This is done in two steps: (i) We derive the leader’s activation times dω(L, i), ∀i ∈ V , ∀ω ∈ Ω′,
by a BFS starting from seed set L in O((|V |+ |A|)|Ω′|) runtime. (ii) Then, we run a reverse BFS
from each node i and each scenario ω and add to Rω

i all nodes that are reachable within distance
dω(L, i) − 1 (in O(|V |(|V | + |A|)|Ω′|) runtime). If dω(L, i) = ∞, Rω

j ⊆ Rω
i holds for all j ∈ Rω

i .
Thus, if the reverse BFS from a node that is not reachable from the leader seed set L encounters
a node j for which Rω

j is already known, we do not need to proceed beyond j but simply add Rω
j

to Rω
i . Conversely, if dω(L, i) <∞, this does not hold in general.
We apply the following reduction rule introduced in [16]: If some node i is a singleton in some

scenario ω (i.e., it has no incident arcs in Aω) the corresponding constraint in (2d) is binding. Let
Zω denote the set of singletons in live-arc graph Gω. We remove the associated constraint and
replace variable yω

i with zi in the objective function. Due to the removal of these constraints, the
corresponding dual variables αω

i and βω
i do not exist anymore. Hence, for each node i ∈ Zω the

coefficient of zi in any associated Benders cut (3c) is zero and thus can be ignored in the separation
procedure. Note, however, that variable zi now appears in the objective function with coefficient∑

ω∈Ω′:i∈Zω pω.
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4.2 Heuristics

Marginal Gain Heuristic (MAR) We implemented the greedy approximation algorithm pro-
posed by Bharathi et al. [3] which is a straight-forward extension of the greedy algorithm by Kempe
et al. [19]. The algorithm starts with an empty seed set F = ∅ and iteratively adds the node j with
the largest marginal gain, i.e., j = argmaxi∈V \(L∪F )σ̂Ω′(L,F ∪ {i})− σ̂Ω′(L,F ), until |F | = k.

Best Individuals Heuristic (BIN) We also introduce a simple but fast heuristic based on the
individual influence σ̂Ω′(L, {i}) of each node i ∈ V \L. We sort all nodes i ∈ V \L in non-increasing
order of the latter value and build a follower’s seed set with the first k nodes in this order. BIN
is used as initial heuristic for our branch-and-cut algorithm since preliminary experiments showed
no (significant) benefits in terms of total solution time when using MAR instead of BIN. We also
exploit this idea in a primal heuristic within the branch-and-bound phase to find new incumbent
solutions. Here, we consider current LP solution values z̄ when determining the k nodes in this
order. This is realized by sorting the nodes i ∈ V \ L by non-increasing values of σ̂Ω′(L, {i})z̄i.
Since BIN runs in a fraction of a second, we invoke it for each obtained LP solution in the root
node of the branch-and-bound tree and once after adding all violated Benders cuts for each other
branch-and-bound node.

4.3 Separation of Benders cuts

Benders cuts (3c) are added dynamically in a cutting plane fashion at each node of the branch-
and-bound tree. We initially include Benders cuts

µω ≤
∑

i∈V \L
|ρω(L, {i})|zi, ∀ω ∈ Ω′, (4)

corresponding to z̄ = 0 to impose initial upper bounds on µω for each scenario ω ∈ Ω′. In
Algorithm 1 we describe the separation routine of Benders cuts (3c) for a given solution (z̄, µ̄)
which generalizes the method in [16] to the competitive case.

Note that we do not compute the optimal dual values ᾱω and β̄ω explicitly, instead we derive
the Benders cut constant and variable coefficients directly from the current primal solution (z̄, µ̄),
see Güney et al. [16] for details. To speed up the computation of the cut constant Cω(z̄), we build
a partial seed set F ′ containing all nodes i for which z̄i = 1 and initialize Cω(z̄) for a particular
scenario ω ∈ Ω′ with the number of activated nodes ρω(L,F ′) (via a BFS). Note that we exclude
singletons Zω in all relevant steps in the separation method, see Section 4.1. For each remaining
node i, we decide whether to increase constant Cω(z̄) or the coefficients cω

j (z̄) for each node j in
reachability set Rω

i , based on value ∑j∈Rω
i
z̄j . If the corresponding Benders cut is violated, we add

it to set C.

5 Computational results
This section includes the description of our benchmark instances, an analysis of the algorithmic
performance of the Benders decomposition algorithm, and a discussion of the influence of certain
parameters such as the number of scenarios |Ω′| per SAA iteration. We also investigate the impact of
varying the seed set cardinalities in relation to different possibilities of choosing the leaders seed set.
Each experiment is based on ten SAA iterations whose solutions, i.e., seed sets, are subsequently
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Require: live-arc graphs Gω = (V,Aω),∀ω ∈ Ω′, solution (z̄, µ̄)
Ensure: set C containing a maximally violated Benders cut (3c) for each scenario ω ∈ Ω′ (if

exists)
F ′ = {i ∈ V \ L : z̄i = 1}
C = ∅
for ω ∈ Ω′ do
Cω(z̄) = |ρω(L,F ′) \ Zω|
cω

j (z̄) = 0, ∀j ∈ V \ L
for i ∈ V \ (ρω(L,F ′) ∪ Zω) do

if
∑

j∈Rω
i
z̄j ≥ 1 then

Cω(z̄) = Cω(z̄) + 1
else
cω

j (z̄) = cω
j (z̄) + 1, ∀j ∈ Rω

i

end if
end for
if µ̄ω > Cω(z̄) +∑

i∈V \(L∪Zω) c
ω
j (z̄) then

C = C ∪ {µω ≤ Cω(z̄) +∑
j∈V \(L∪Zω) c

ω
j (z̄)zj}

end if
end for
return C

Algorithm 1: Separation of Benders cuts

evaluated on |Ω′′| = 100 000 independently generated scenarios. The solution with the largest
objective value on set Ω′′ is finally selected. To ease the comparison of different experiments, we
decided to use a fixed number of SAA iterations instead of using a dynamic stopping criterion
as suggested, e.g., in Kleywegt et al. [22]. The leader seed set is precomputed based on ten SAA
iterations using the BEN method (by solving the CIMP with an empty leader seed set) if not stated
otherwise and by considering |Ω′| = 750 scenarios. As discussed in Section 5.2 the latter choice
offered a reasonable trade-off between solution quality and computational effort.

All algorithms have been implemented in julia 1.1.0 and each experiment has been performed on
a single core of an Intel Xeon E5-2670v2 machine with 2.5GHz and 16GB RAM (except instance
tw-datascience for which the memory limit has been set to 32GB RAM). We used IBM CPLEX
12.8 as ILP solver, and set the time limit for a single SAA iteration to two hours.

5.1 Instance description

In the following we describe how our first set of real-world benchmark instances is created. By
using the developer interface of Twitter in its freely available standard version it is possible to
query information about arbitrary users, tweets, and their relation to each other in the Twitter
network [32]. There are, however, restrictions on the amount and type of information obtained in
each time slot of 15 minutes. This makes it impossible to re-construct a subgraph of the Twitter
network based on friend and follower relations in reasonable time. Thus, we build instance graphs
in a different way: We choose some hashtag (e.g., #giftideas) and search for tweets including this
hashtag (limited to the last seven days). The authors of these tweets build the initial set of nodes
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Table 1: Real-world social networks: number of nodes |V |, number of directed arcs |A|, average
node degree δ(i), expected node degree E[δ(i)] = ∑

j∈V :(i,j)∈A pji +∑
j∈V :(j,i)∈A pij .

instance |V | |A| δ(i) E[δ(i)] description (retrieval date)
tw-datascience 25 463 405 932 31.8 1.4 #datascience (2019-04-14)
tw-giftideas 6 263 358 705 114.5 6.7 #giftideas (2019-10-10)
tw-nrw2019 4 684 224 459 95.8 1.4 #nrw2019 (2019-10-09)
tw-orms 758 4 376 11.5 0.9 #orms (2019-10-09)
tw-valentinesday 1 782 23 467 26.3 2.3 #valentinesday (2019-10-10)
tw-vienna 4 585 20 179 8.8 0.8 #vienna (2019-04-12)
msg-college 1 899 20 296 21.4 0.9 messaging network of UC-Irvine [25]
msg-email-eu 1 005 24 929 49.6 2.2 email network from eu workers [25]
soc-advogato 6 551 47 322 14.4 0.7 free software development community [33]
soc-anybeat 12 645 67 053 10.6 0.5 ’anti-Facebook’ [33]

in our instance. Then, for each user we query all tweets in the year 2019 (up to 3200) and analyze
them in detail: We consider each tweet which includes the defined hashtag and check whether it
retweets, quotes, replies, or mentions other users. These related users are added to the instance
and analyzed in the same way. The procedure stops when no more new users can be added. In
particular we obtained instances using the hashtags #datascience, #giftideas, #nrw2019 (national
elections 2019 in Austria), #orms (operations research and management science), #valentinesday,
and #vienna. These hashtags could be used, for instance, to promote products, events, political
messages, or cultural activities.

The influence probability pij of each arc (i, j) ∈ A is set to the number of tweets user j re-
tweets original tweets written by user i relative to the total number of tweets written by user i.
These approximately 106 observations (over all instances) result in an empirical distribution of
the influence probability with characteristics that are as follows: minimum = 0.02%, Q1 = 0.2%,
Q2 = 0.6%, Q3 = 2.2%, maximum = 100%, where Qx denotes the xth quartile of the distribution.

The latter distribution is used to extend benchmark instances from the literature. We estimate
the missing influence probability values by drawing random samples from the aforementioned em-
pirical distribution. Some of those graphs also contain parallel arcs that reflect messages sent at
different points in time. Since we are mainly interested in node relationships, we consider only one
of those arcs.

A summary of all considered instances is reported in Table 1. In Figure 2 we report the expected
node in- and out-degrees, i.e., E[δ−(i)] = ∑

(j,i)∈A pji and E[δ+(i)] = ∑
(i,j)∈A pij , respectively.

5.2 Performance analysis and parameter fixing

Figure 3 contains four performance profiles visualizing relative numbers of SAA iterations solved
within a certain runtime. These results are obtained from 10 SAA iterations per instance using
parameter values |L| = |F | = 10 and |Ω′| ∈ {250, 500, 750, 1 000}. Results for Twitter instances are
shown in Figures 3a and 3b per instance and for each considered number of scenarios, respectively.
Similarly, Figures 3c and 3d detail results for instances based on graphs from the literature. Fig-
ure 3b is based on 60 data points since we consider six different Twitter instances and ten SAA
iterations. The other three figures result from 40 data points as we consider four graphs from the
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Figure 2: Boxplots of expected node in- and out-degrees for each instance graph.

literature and four different values for the numbers of scenarios.
Comparing Figure 3b and Figure 3d, we observe that the impact of increasing the number of

scenarios on the time required to solve a single SAA iteration seems to be smaller for Twitter
instances than for those from the literature. We also observe that all SAA iterations of instances
different from tw-datascience could be solved within the time limit of two hours. On the contrary,
almost all SAA iterations of instance tw-datascience were not solved to optimality when |Ω′| ∈
{500, 750, 1 000}. To ease the comparison we will not consider tw-datascience in the further
presentation of results. We remark, however, that the latter instance graph could be tackled using
a relatively small number of scenarios (e.g., 250 or even less) but a larger number of SAA iterations.

Kleywegt et al. [22] suggest to assess the quality of a solution obtained via SAA by the so-called
approximation gap which estimates the difference between the objective value obtained from the
SAA and the true objective value σ(L,F ∗). In the following, we will use the relative approximation
gap

∆ =

∣∣∣σ̂Ω′′(L, F̂ ∗)− 1
10
∑10

i=1 σ̂Ω′
i
(L, F̂i)

∣∣∣

σ̂Ω′′(L, F̂ ∗)
, (5)

which relates such an overestimated difference to the best known objective value. Here, F̂i is the
seed set obtained in the ith SAA iteration and σ̂Ω′

i
(L, F̂i) the corresponding objective value.

We analyze the influence of the number of considered scenarios on the relative approximation
gaps, the number of SAA iterations needed to identify the best known solution F̂ ∗, and the similari-
ties |⋂10

i=1 F̂i|/|F | of the solutions obtained in the different SAA iterations. These results are shown
in Figure 4 and based on the problem parameters outlined above (excluding tw-datascience).
Figure 4a reveals a notable reduction of the approximation errors when considering 500 scenarios
instead of 250. However, the impact of further increasing the number of considered scenarios to
750 or 1 000 seems to be minor. From Figure 4b we conclude that most of the time, the best
solutions are found in the first two SAA iterations, at least when considering 750 or 1 000 scenarios.

12



0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

20

40

60

80

100

runtime [s]

#
SA

A
ite

ra
tio

ns
[%

]

tw-datascience
tw-giftideas
tw-nrw2019
tw-orms
tw-valentinesday
tw-vienna

(a)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

20

40

60

80

100

runtime [s]

#
SA

A
ite

ra
tio

ns
[%

]

|Ω|
250
500
750
1000

(b)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

20

40

60

80

100

runtime [s]

#
SA

A
ite

ra
tio

ns
[%

]

msg-college
msg-email-eu
soc-advogato
soc-anybeat

(c)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

20

40

60

80

100

runtime [s]

#
SA

A
ite

ra
tio

ns
[%

]
|Ω|
250
500
750
1000

(d)

Figure 3: Numbers of SAA iterations solved within a certain runtime in percent (#SAA iterations
[%]). Figures (a) and (b) show the performance profiles of the Twitter instances grouped by instance
names and number of considered scenarios, respectively. Similarly, figures (c) and (d) show the
performance profiles of the instances from the literature grouped by instance names and number
of considered scenarios, respectively.

Kleywegt et al. [22] suggested to stop an SAA algorithm (or adjust its parameters) if the solution
is not improved for a few consecutive iterations. We conclude that ten SAA iterations seem to
be sufficient in our case even if we want to cover the outliers (which in fact arise for instance
tw-valentinesday). Figure 4c depicts the similarities of the solutions over all SAA iterations. As
expected, a larger number of scenarios increases the similarities of the solutions obtained in the
different SAA iterations. If |Ω′| ∈ {750, 1 000}, eight out of ten seed nodes remain the same over
all SAA iterations in seven out of nine cases.

We propose that |Ω′i| = 750 is a reasonable choice for further investigations on the considered
instances, since increasing the number of scenarios to |Ω′i| = 1 000 results only in marginal im-
provements in the relative approximation gap, the number of SAA iterations needed to identify
F̂ ∗, and the similarity of solutions obtained from each SAA iteration. We further remark that
all best known solutions F̂ ∗ when considering 750 scenarios coincide with the corresponding solu-
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tions obtained when considering 1000 scenarios, which is not the case if 250 or 500 scenarios are
considered.
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Figure 4: Impact of different numbers of scenarios on (a) the relative approximation gaps ∆ in
percent (5), (b) the number of SAA iterations needed to find F̂ ∗, and (c) the relative similarities
of the identified seed sets over all SAA iterations. Each data point corresponds to one instance.

After fixing the number of scenarios to |Ω′| = 750, we now focus on the variation of seed set
sizes, i.e., |L| ∈ {10, 15, 20} and |F | ∈ {10, 15, 20}. The corresponding performance profiles are
shown in Figure 5 which indicate that the problem becomes more difficult with increasing size of
the follower seed sets F which is consistent with the results in [16]. In contrast, Figure 5c shows
that for the considered problem instances the solution time is reduced when enlarging the leader
seed sets.

We further remark that in none of the rare cases in which an SAA iteration hits the time
limit, the corresponding incumbent seed set F̂i evaluated on the larger set Ω′′ lead to the estimated
optimal seed set F̂ ∗. If this would be the case, one would need to be careful with interpreting
the approximation gap (see [1] for further details). We further remark that the optimality gap
computed by (UB − σ̂Ωi(L, F̂i))/UB, where UB denotes the best upper bound, is at most 0.8%.

Finally, we remark that detailed results for |Ω′| = 750 are shown in Table 2 in the appendix.
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Figure 5: Number of SAA iterations solved within the runtime limit in percent (#SAA iterations
[%]) grouped by instances and seed set sizes |L| and |F |.
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5.3 Exact versus heuristic solution quality

Here, we analyze the improvements one can expect from using the exact approach BEN compared
to the considered heuristics MAR and BIN. Figure 6 shows relative improvements of the objec-
tive values over those obtained from using MAR (denoted as σ̂M

Ω′
i
(L, F̂i)) and BIN (denoted as

σ̂B
Ω′

i
(L, F̂i)), respectively, for each SAA iteration and instance. We observe that compared to the

objective values obtained by BEN the losses are quite large when using heuristic BIN (Figure 6a)
but only marginal when considering heuristic MAR (Figure 6b). These observations are consistent
to the empirical tests on different instances for the IMP, see, e.g. [15]. These losses are even lower
if only the estimated optimal seed sets F̂ ∗ (evaluated on |Ω′′|) are compared. The latter gaps are
characterized by minimum = Q1 = Q2 = 0%, Q3 = 0.05%, maximum = 0.7%.

However, using solutions obtained from heuristic MAR as initial solution for the branch-and-cut
approach does in average not improve the total runtime of BEN. This indicates that good primal
bounds are either easily found in the branch-and-bound process or not that important for pruning
the search tree.

Overall, the results of this subsection indicate that using MAR instead of an exact approach
such as BEN is likely to be sufficient in practical settings, at least for the considered instances. To
this end, we stress the fact that BEN can be easily extended to more complex variants of the CIMP,
cf. the discussion at the end of Section 2. Given the fact that the tight approximation ratio of MAR
would not carry over to such problem variants it seems likely that significantly larger benefits of
exact methods over a correspondingly extended variant of MAR can be expected in such settings.
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Figure 6: Relative losses in the objective values when considering heuristics BIN (Figure 6a) and
MAR (Figure 6b), respectively, compared to the exact method BEN over all SAA iterations.

5.4 The price of competition

In this section we discuss the relative losses (measured in numbers of activated nodes) the leader
and the follower may experience due to their rivalry which can be seen as the price of com-
petition. Figures 7a and 7c show the leader’s relative losses if the follower propagates from
its estimated optimal seed set F̂ ∗ compared to the setting in which there is no follower, i.e.,
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(λ̂Ω′′(L, ∅) − λ̂Ω′′(L, F̂ ∗))/λ̂Ω′′(L, ∅), where λ̂Ω′′(L,F ) denotes the expected number of nodes acti-
vated by the leader when assuming leader seed set L and follower seed set F . Conversely, Figures 7b
and 7d show the follower’s relative losses in presence of a leader compared to the case where no
leader exists. Denoting the estimated optimal seed set of the follower when no leader exists by
F̂ ∗∅ these relative losses are formally defined as (σ̂Ω′′(∅, F̂ ∗∅ )− σ̂Ω′′(L, F̂ ∗))/σ̂Ω′′(∅, F̂ ∗∅ ). The relative
losses of the leader seem to be higher than the follower’s losses which could be explained by the
problem’s assumption that the follower knows about the leader’s activities in advance but not vice
versa. An extreme example is given in Figure 8 which illustrates that the leader can face very large
losses due to competition. In fact, the follower can activate most nodes that have been activated
by the leader without competition. Figures 7c and 7d in which we group these results by instance
show, however, that there are exceptions to these observations. For some Twitter instances the
follower’s losses are higher which might indicate that the leader’s seed set L is a very good choice
(see also Section 5.5) which can hardly be compromised by the follower, especially since the leader
is the first one to act and also is prioritized in the propagation model in case of ties.
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Figure 7: Relative losses of activated nodes for the leader (Figures 7a and 7c) and the follower
(Figures 7b and 7d) due to competition, grouped by seed set sizes (Figures 7a and 7b) and instances
(Figures 7c and 7d).
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5.5 The impact of the leaders choice

Finally, we discuss potential impacts of the leader’s strategy to choose a seed set on the expected
outcome for the follower. We focus on seed set sizes |L| = |F | = 20 and report the relative changes
of the follower’s (and the leader’s) expected number of reached nodes when the leader selects its
seed set by heuristic BIN (denoted by LB) instead of the exact method BEN (simply denoted by
L). We compute those changes by ∆F = (σ̂Ω′′(L, F̂ ∗)− σ̂Ω′′(LB, F̂ ∗B))/σ̂Ω′′(LB, F̂ ∗B) for the follower’s
outcome, and by ∆L = (λ̂Ω′′(L, F̂ ∗) − λ̂Ω′′(LB, F̂ ∗B))/λ̂Ω′′(LB, F̂ ∗B) for the leader’s outcome. Here,
F̂B denotes the estimated optimal follower seed set when the leader selects its seed set by heuristic
BIN. We do not report results for heuristic MAR, since the correspondingly obtained solutions are
quite similar to those obtained with exact method BEN, cf. Section 5.3.

Figure 9 shows the relative changes for each instance where positive values indicate a preference
for exact method BEN. We observe, somewhat surprisingly, that the follower improves in most of
the cases if the leader chooses a seed set using the exact method BEN. The results for the leader
are ambiguous and show no clear trend. A potential explanation for this outcome might be that
in estimated optimal leader seed sets there is less overlap between the sets of reached nodes for
different seed nodes (which is clearly more efficient in the view of a single entity) than for heuristic
seed sets. As a consequence, less overlap makes it potentially easier for the follower to block certain
parts of the graph from being activated by the leader.

6 Concluding remarks
We studied the competitive influence maximization problem based on a correspondingly adapted
independent cascade model. We showed that that this problem can be formulated as an instance of
a stochastic maximal covering location problem. Solutions are obtained via two heuristic methods
and a Benders decomposition approach based on a set covering formulation, embedded in a sample
average approximation framework (SAA). The first part of our extensive computational study
focused on determining reasonable framework parameters, particularly, a number of scenarios that
lead to an acceptable approximation gap and low numbers of SAA iterations to identify high-quality
solutions for the considered instances.

Further insights have been derived in the second part of our empirical study. We showed that
the price of competition that multiple entities may experience depends strongly on the structure
of the instance graphs but in general has worse effects on the leader. Since the leading entity may
suffer from enormous losses compared to the follower, it is advisable to consider different first mover
strategies. Such investigations open a potential research avenue in the direction of game theory
and bi-level programming.
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(a) |L| = 10, F = ∅

(b) |L| = 10, |F | = 10

Figure 8: Expected numbers of activations of instance soc-anybeat. Nodes that are activated by
the leader in all scenarios are colored blue, while nodes that are activated by the follower in all
scenarios are colored red. Nodes that are activated by both the leader and the follower in different
scenarios have a correspondingly mixed color. The total number of activations is illustrated by the
opacity of a node. Seed nodes have a larger radius than the remaining nodes.
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Figure 9: Relative changes ∆L and ∆F in the objective values for the leader and the follower,
respectively, if the leader seed sets are obtained by heuristic BIN instead of exact method BEN.
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Table 2: Detailed results for |Ω′| = 750. We report the average runtimes t̄X[s] over all 10 SAA
iterations in seconds, the estimated objective values of the follower σ̂X

Ω′′(L, F̂ ∗) and the leader
λ̂X

Ω′′(L, F̂ ∗). Superscripts X indicate the used method, i.e., an empty superscript indicates the BEN
method while B and M the BIN and MAR methods, respectively. We further report the and the
estimated approximation gap ∆[%] in percent.

Instance |L| |F | t̄[s] t̄M[s] t̄B[s] σ̂Ω′′(L, F̂ ∗) σ̂M
Ω′′(L,F ) σ̂B

Ω′′(L, F̂ ∗) λ̂Ω′′(L, F̂ ∗) λ̂M
Ω′′(L, F̂ ∗) λ̂B

Ω′′(L, F̂ ∗) ∆[%]

msg-college

0
10 26 20 0 355.8 355.8 308.3 0.0 0.0 0.0 0.02
15 42 21 0 376.2 376.2 326.7 0.0 0.0 0.0 0.0
20 55 21 0 393.4 393.4 339.9 0.0 0.0 0.0 0.04

10
10 129 7 0 237.0 236.2 190.5 125.9 130.9 173.2 0.03
15 316 8 0 276.0 275.8 229.9 99.1 100.6 141.3 0.03
20 317 9 0 304.4 303.3 251.0 79.6 83.3 127.2 0.08

15
10 97 6 0 202.2 202.2 156.0 180.7 180.7 225.0 0.05
15 167 7 0 243.8 243.8 190.6 143.9 143.9 198.1 0.04
20 214 7 0 274.1 273.4 222.5 120.2 119.9 170.2 0.03

20
10 104 6 0 187.8 187.2 143.7 211.6 213.1 253.8 0.09
15 233 7 0 228.9 227.3 184.1 174.9 180.1 217.0 0.14
20 363 7 0 258.7 257.0 205.7 150.4 151.9 200.5 0.03

msg-email-eu

0
10 31 32 0 444.8 444.8 436.3 0.0 0.0 0.0 0.01
15 47 30 0 454.5 454.5 441.5 0.0 0.0 0.0 0.02
20 60 30 0 463.3 463.3 445.7 0.0 0.0 0.0 0.02

10
10 603 9 0 360.6 360.5 329.8 86.2 86.4 116.3 0.08
15 2316 10 0 384.3 383.5 342.5 67.4 66.7 104.8 0.02
20 4391 11 0 399.7 398.6 359.5 55.4 53.9 89.1 0.06

15
10 336 8 0 336.5 336.1 310.2 120.3 120.2 145.5 0.13
15 324 9 0 364.8 364.2 325.3 93.8 94.3 131.5 0.05
20 1311 10 0 382.1 381.3 344.6 80.7 80.7 114.4 0.01

20
10 92 6 0 321.1 321.1 300.9 144.0 144.0 163.4 0.12
15 136 7 0 352.0 351.2 326.6 114.8 115.7 138.0 0.06
20 525 8 0 370.2 369.9 335.9 98.4 100.1 130.8 0.09

soc-advogato

0
10 166 51 0 556.1 556.1 481.8 0.0 0.0 0.0 0.11
15 316 53 0 595.7 594.2 498.4 0.0 0.0 0.0 0.12
20 512 54 0 628.6 626.7 499.5 0.0 0.0 0.0 0.08

10
10 226 24 0 390.3 390.3 281.2 173.1 173.1 287.5 0.22
15 372 26 0 449.2 449.2 343.9 129.2 129.2 237.0 0.05
20 647 28 0 493.4 493.3 385.7 108.4 114.1 207.9 0.09

15
10 413 22 0 346.5 346.5 258.2 252.2 252.2 345.3 0.0
15 861 23 0 408.2 407.8 312.4 202.8 207.0 300.8 0.05
20 726 25 0 457.8 456.9 332.8 167.6 167.5 284.0 0.03

20
10 441 22 0 318.0 318.0 252.7 317.6 317.6 388.2 0.01
15 816 22 0 378.1 378.1 293.7 265.0 265.0 350.8 0.01
20 1440 24 0 426.1 425.7 311.0 222.4 227.4 338.6 0.0

soc-anybeat

0
10 358 243 0 1179.1 1179.1 1134.0 0.0 0.0 0.0 0.03
15 394 197 0 1203.3 1203.3 1146.6 0.0 0.0 0.0 0.02
20 691 215 0 1221.5 1221.5 1155.0 0.0 0.0 0.0 0.01

10
10 302 76 0 1035.3 1030.5 898.4 144.2 148.7 283.5 0.01
15 340 70 0 1074.4 1071.0 924.9 117.0 115.5 258.8 0.01
20 494 75 0 1098.7 1096.1 930.5 111.5 111.7 258.8 0.01

15
10 407 67 0 978.4 976.6 815.6 225.2 226.6 390.5 0.02
15 603 78 0 1023.6 1022.1 849.2 181.9 183.2 359.6 0.01
20 979 81 0 1052.9 1052.6 854.7 155.5 153.2 359.6 0.01

20
10 433 62 0 946.1 940.2 742.9 275.6 281.3 481.5 0.03
15 681 74 0 995.3 995.3 750.3 228.4 228.3 479.2 0.03
20 1283 78 0 1028.3 1028.2 755.7 195.5 195.7 478.5 0.01

tw-giftideas

0
10 345 528 0 2307.6 2307.6 2269.0 0.0 0.0 0.0 0.0
15 802 527 0 2324.5 2324.5 2274.0 0.0 0.0 0.0 0.0
20 2051 564 0 2339.7 2339.6 2278.3 0.0 0.0 0.0 0.0

10
10 471 216 0 2226.6 2226.0 2186.5 92.0 92.7 121.1 0.01
15 1644 220 0 2242.2 2241.4 2207.4 92.0 92.7 100.3 0.0
20 4035 217 0 2257.3 2256.7 2209.7 88.9 92.4 97.9 0.01

15
10 369 216 0 2216.0 2215.1 2151.6 109.1 110.0 172.9 0.0
15 1306 203 0 2231.3 2230.3 2165.8 109.0 110.0 158.5 0.0
20 1753 210 0 2246.0 2244.9 2182.7 108.9 110.0 141.8 0.0

20
10 350 216 0 2215.1 2214.3 2150.9 125.0 126.0 188.7 0.0
15 903 211 0 2229.9 2229.0 2165.2 125.0 125.9 174.5 0.0
20 783 209 0 2243.3 2242.7 2181.9 122.9 122.9 157.7 0.0
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Table 2 continued.

Instance |L| |F | t̄[s] t̄M[s] t̄B[s] σ̂Ω′′(L, F̂ ∗) σ̂M
Ω′′(L,F ) σ̂B

Ω′′(L, F̂ ∗) λ̂Ω′′(L, F̂ ∗) λ̂M
Ω′′(L, F̂ ∗) λ̂B

Ω′′(L, F̂ ∗) ∆[%]

tw-nrw2019

0
10 133 59 0 861.2 861.2 831.6 0.0 0.0 0.0 0.01
15 238 62 0 915.7 915.7 863.4 0.0 0.0 0.0 0.05
20 384 65 0 957.9 957.9 867.9 0.0 0.0 0.0 0.06

10
10 356 15 0 291.5 291.5 231.2 626.6 626.6 653.8 0.04
15 1267 17 0 353.2 353.2 267.9 607.6 607.6 635.0 0.07
20 2943 17 0 405.4 405.4 307.8 583.2 586.7 609.8 0.16

15
10 350 14 0 264.4 264.4 195.9 693.9 693.9 731.1 0.02
15 1134 15 0 320.6 320.6 240.4 671.8 671.8 701.2 0.06
20 2298 17 0 368.3 368.2 277.2 646.5 646.7 681.1 0.17

20
10 313 14 0 237.2 237.2 181.9 751.2 751.2 785.4 0.03
15 788 14 0 287.5 287.5 229.1 723.9 723.9 748.7 0.22
20 1536 16 0 329.3 329.3 262.9 703.0 707.4 726.6 0.22

tw-orms

0
10 27 2 0 91.2 91.2 78.0 0.0 0.0 0.0 0.1
15 43 2 0 108.0 108.0 85.6 0.0 0.0 0.0 0.03
20 67 3 0 120.9 120.9 89.7 0.0 0.0 0.0 0.09

10
10 18 2 0 45.8 45.8 35.6 67.1 67.1 72.7 0.26
15 31 2 0 59.9 59.9 43.3 63.9 63.9 69.8 0.04
20 102 2 0 71.7 71.7 50.2 62.9 62.9 68.0 0.07

15
10 21 1 0 37.0 37.0 29.3 86.3 86.3 89.5 0.01
15 57 2 0 49.5 49.5 41.6 81.1 81.1 81.0 0.05
20 119 2 0 60.7 60.7 50.6 77.5 76.9 78.0 0.03

20
10 27 1 0 35.7 35.7 25.4 91.4 91.4 102.1 0.11
15 71 1 0 47.7 47.7 38.7 89.5 89.5 91.2 0.06
20 114 2 0 58.4 58.4 45.2 86.1 86.1 87.8 0.12

tw-valentinesday

0
10 24 13 0 452.3 452.4 361.5 0.0 0.0 0.0 0.03
15 60 15 0 466.5 466.4 366.0 0.0 0.0 0.0 0.02
20 209 14 0 477.7 477.8 365.9 0.0 0.0 0.0 0.04

10
10 75 7 0 287.7 287.7 223.8 177.8 177.8 228.7 0.03
15 256 8 0 300.5 300.5 223.9 174.5 174.5 228.5 0.03
20 1288 8 0 311.9 311.9 235.6 172.0 172.0 216.9 0.05

15
10 65 7 0 285.7 285.7 223.8 187.1 187.1 242.8 0.05
15 401 8 0 297.2 297.2 223.9 186.8 186.8 242.7 0.05
20 4443 7 0 307.7 307.7 235.6 184.4 184.4 231.1 0.05

20
10 77 7 0 282.9 282.9 223.3 201.0 201.1 254.6 0.05
15 1727 7 0 293.6 293.6 223.4 198.5 198.5 254.5 0.06
20 5776 7 0 303.6 303.6 235.1 198.4 198.5 242.9 0.02

tw-vienna

0
10 68 13 0 190.9 190.9 125.5 0.0 0.0 0.0 0.1
15 124 14 0 250.5 250.5 150.0 0.0 0.0 0.0 0.12
20 143 14 0 297.0 297.0 153.6 0.0 0.0 0.0 0.12

10
10 27 12 0 117.8 117.8 53.1 157.7 157.7 169.2 0.05
15 65 13 0 160.1 160.1 67.8 149.8 149.9 167.4 0.08
20 219 13 0 193.7 193.7 71.4 149.8 149.8 166.6 0.06

15
10 82 13 0 99.1 99.1 48.1 210.9 210.9 214.8 0.09
15 176 12 0 133.3 133.3 48.5 203.7 203.7 214.4 0.04
20 420 13 0 164.8 164.8 50.0 195.5 195.5 214.1 0.11

20
10 134 12 0 86.4 86.4 48.1 250.6 250.6 261.3 0.04
15 336 12 0 117.9 117.9 48.5 242.3 242.3 260.9 0.19
20 560 13 0 147.6 147.6 50.0 235.2 235.2 260.6 0.11
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