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Abstract

We propose and solve a rich, bi-objective extension of the orienteering problem with time windows
(OPTW) to model a combined routing and scheduling problem. Our research is motivated by the
problem faced by mobile freelancers who have to integrate irregular appointments and tasks into their
daily routines. Those people have a number of tasks which they need to perform at various locations
(e.g. meetings with different clients), subject to varying time constraints (e.g. opening hours), and
with different levels of importance or urgency (e.g. submitting a deliverable versus cleaning the home
office). Furthermore, sets of related tasks may be subject to precedence relations and timely dependencies
between them. We explicitly consider the trade-off between planning more tasks and enjoying more free
time by means of a bi-objective model. The extension of the OPTW and the bi-objective formulation
result in the Personal Planning Problem (PPP). In this paper we present a mathematical formulation
of the PPP and a metaheuristic based on Large Neighborhood Search (LNS) is developed to generate a
set of non-dominated solutions to the problem. We analyze solution quality on real-world-inspired test
instances. Exact reference sets based on a linear single-commodity flow model are used as benchmarks.
Computational experiments show that the proposed metaheuristic generates near-optimal solution fronts
and scales well to larger instances.
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1. Introduction

The present study originates from a research project which aims at investigating the optimal planning
of flexible activities and complex trip sequences, and at developing a personal schedule optimizer with
built-in routing functionality. The problem to be solved is motivated by the challenges faced, for example,
by mobile freelancers with complex routines of multiple projects and different clients. People in this target
group have a variety of activities which they may need to perform at various locations (e.g. meetings with
different clients, project work at different venues). These activities may be subject to timing constraints
(e.g. arranged appointment times, opening hours), and they may have varying priorities or urgency
(e.g. submitting a deliverable versus cleaning the home office). Hence, those people need to plan their
time wisely to strike a balance between their professional activities and their private leisure time.

If many activities of private and professional nature need to be performed at diverse locations within
varying time frames, determining when, where, and in what order to plan them can be overwhelming for a
person due to the large number of possibilities. A sophisticated schedule optimizer can help to overcome
this complexity by filtering out inefficient options and presenting only a few of the most streamlined
plans. If trip sequences and daily schedules are improved a better use of leisure time as well as an
increase in the number of performed activities can be achieved. This can lead to a better quality of life
and satisfaction by facilitating a better work-life balance. Thus, a personal activity scheduler should
offer suggestions for where, when, and in which order activities can efficiently be planned. Four aspects
need to be considered: potential locations of an activity (where to perform an activity), potential time
windows for an activity (when to perform the activity), the sequence of activities (does another activity
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have to be performed before or after this activity, and does a time lag have to be respected), and the
travel times between locations.

We propose to model this problem with an extension of the well-known orienteering problem with
time windows (OPTW) by Kantor and Rosenwein (1992). We consider a graph, with nodes and directed
arcs, where the nodes are used to represent the activities and their locations, the profits at the nodes
correspond to the relative importance of these activities, and the service times measure how much time
the activities require. The arcs in the graph represent the travel time between two nodes depending on
the given mode of transport.

Several extensions to the classic OPTW are needed to model additional real-life aspects. First,
activities may have several possible locations to choose from. For example, groceries can be bought at
various supermarkets, eating out is possible at different restaurants, and packages can be sent from any
post office. Moreover, efficient schedules should not be short-sighted and should be based on a planning
horizon longer than just one day. As a result, tasks and locations may have multiple time windows during
the planning horizon. For instance, a pharmacy may be open only on weekdays, and its opening hours
may be split due to a midday break. Similarly, tasks such as having lunch at noon may have their own
time windows independent of their potential locations. In addition, sets of tasks may be connected by
precedence relations. For example, the subsequent stages of a project (e.g. music composition, practice,
and recording), may be done individually at any time, but not in any order. Finally, it may be necessary
to respect a certain time delay between related tasks. For example, if the person wishes to exercise three
times per week, they may wish to allocate a day of rest between each session. This can be modeled
by imposing a minimum time delay constraint between the individual sessions. Similarly, a maximum
time delay constraint may be added to ensure that tasks are not too far apart (e.g. buying groceries and
bringing them home into the fridge).

The subjective quality of a schedule depends not only on its profit in terms of the tasks planned,
but also on the efficiency of their timing and routing. These two aspects are conflicting, and people
may also have varying individual preferences with regard to the trade-off between between professional
activities and leisure. This means that two conflicting objectives have to be considered when determining
optimal schedules: (i) the profit of planned activities and (ii) the amount of leisure time. For these
reasons, we solve a bi-objective formulation of the problem, where the aim is to find a set of Pareto-
optimal compromise solutions, i.e. solutions for which it is impossible to improve either objective without
worsening the other. This allows the decision makers to choose among a set of diverse schedules the one
which best matches their preferences.

We call this problem the Personal Planning Problem (PPP). We present a metaheuristic based on
Large Neighborhood Search (LNS) in order to generate solutions within very short computation times.
We analyze solution quality on real-world-inspired test instances. For this purpose, we also formulate the
problem as a mixed-integer linear programming model based on single-commodity flows and solve it with
CPLEX embedded in an epsilon-constraint framework. The sets of solutions generated by our LNS are
compared to the exact solutions and evaluated with different performance measures for multi-objective
optimization.

The remainder of the article is organized as follows. In the next section, a literature review is
presented. In Section 3, a detailed mathematical formulation for the PPP is provided. In Section 4,
the solution approach is introduced and explained. Different computational experiments are presented
in Section 5 to show the effectiveness of our solution approach and discuss the impact of the envisaged
objectives. Concluding remarks are provided in Section 6.

2. Literature Review

A growing body of research has been published on the Orienteering Problem (OP) and its variants.
A recent review is presented in Vansteenwegen et al. (2011). The OP is related to the traveling salesman
problem with profits (TSPP), of which a slightly older review is provided by Feillet et al. (2005). As
noted by Vansteenwegen et al. (2011), not much research has been published specifically on the OPTW
originally proposed by Kantor and Rosenwein (1992), but the team orienteering problem with time
windows (TOPTW) is a generalization that has been given notable attention.
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2.1 Single-objective OPs

An exact solution method to orienteering problems including the TOPTW is proposed in Boussier
et al. (2007). However, due to the problem’s difficulty and the instance sizes of real-life applications, most
research on the TOPTW has focused on heuristic approaches (Vansteenwegen et al., 2011). Vansteenwe-
gen et al. (2009) propose a fast and deterministic Iterated Local Search (ILS) to solve the TOPTW within
a few seconds and introduce a set of benchmark instances. Following this paper, more elaborate algo-
rithms are introduced (in order of publication) in Montemanni and Gambardella (2009) (Ant Colony Op-
timization, ACO), Montemanni et al. (2011) (enhanced ACO), Labadie et al. (2011) (GRASP+variable
neighborhood descent), Labadie et al. (2012) (granular variable neighborhood search), and Lin and Yu
(2012) (simulated annealing). Most authors report a set of new best solutions at the time of publica-
tion. To the extent of our knowledge, the most recent contribution is that of Hu and Lim (2014), who
combine heuristic and exact methods within an iterative three-component heuristic which finds 35 new
best solutions and appears to outperform previous methods in terms of average performance.

Some rich extensions to the OP have also been proposed. Tricoire et al. (2010) model the combined
problem of route planning and scheduling for field workers and sales representatives to visit both regular
and potential new clients. The authors introduce the multi-period OP with multiple time windows
(MuPOPTW), and solve it with an exact algorithm embedded within a variable neighborhood search
(VNS). The VNS in Tricoire et al. (2010) also produces high quality results on the (T)OPTW benchmark
instances. Another rich variant is presented by Souffriau et al. (2013), who introduce the multi-constraint
TOP with multiple time windows (MCTOPMTW). This approach considers resource constraints. By
doing so, a number of usual constraints are tackled, for instance multiple time windows. Souffriau
et al. (2013) are motivated by a tourism application where the different attributes can for instance
represent entry costs (to limit total spend) or point-of-interest categories (to accommodate “max-n-type
constraints” such as visiting at most n museums).

2.2 Multi-objective OPs

Despite interest in orienteering problems in general, multi-objective formulations of the problem have
only received attention in the last ten years. This is somewhat unexpected since the OP is characterized
by an inherent conflict between the profit collected and the distance traveled. Most researchers solve
the problem in a single-objective way, with a hard constraint on a resource (usually time), while some
approaches maximize the difference between profit and cost (Feillet et al., 2005).

Jozefowiez et al. (2008) develop a multi-objective evolutionary algorithm for the traveling salesman
problem with profits (TSPP). An exact method for the bi-objective TSPP, based on the ε-constraint
framework, is introduced in Bérubé et al. (2009). Another exact approach, following the two-phase
method, is provided by Filippi and Stevanato (2012). In a following article, the same authors provide an
approximation method which enumerates a subset of the Pareto set ( Filippi and Stevanato (2013)).

A different bi-objective orienteering problem is introduced by Schilde et al. (2009), with applications
in the tourism sector. The objectives refer in this case to the different categories of points of interest
(e.g. culture, leisure, dining), with each such point offering different degrees of benefits for each category.
The aim is to find a variety of tours offering different degrees of focus on each category, but without
neglecting too much any particular category. The authors develop an ACO algorithm and a VNS to
generate non-dominated fronts of potential solutions. Both procedures are tested on bi-objective OP
(BOOP) benchmark instances as well as on real-life instances. An important point of difference between
the BOOP presented by Schilde et al. (2009) and the bi-objective PPP is that the objective functions
in the PPP are systematically negatively correlated. Also motivated by tourism applications, Rodŕıguez
et al. (2012) present a formulation with multiple objectives, including: minimizing distance traveled,
minimizing the cost of scheduled activities, and maximizing the utility gained from those activities.
Constraints include visiting hours, lunch and dinner breaks, and preference information on the types of
activities. The problem is solved using an interactive tabu search (TS) metaheuristic in which the search is
guided by the decision maker’s choices. Tricoire (2012) proposes a general algorithmic framework (multi-
directional local search, MDLS) for solving multi-objective problems including the BOOP. The non-
dominated set is iteratively improved using single-objective improvement algorithms for each objective.
The framework is tested on the BOOP instances of Schilde et al. (2009) and improved results are obtained.

Most recently, a generic bi-objective branch-and-bound algorithm is presented by Parragh and Tricoire
(2015) and applied specifically to the bi-objective TOPTW. MDLS is used to compute upper bound sets,
and column generation for lower bound sets. Exact sets are obtained through branch-and-price.
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2.3 Routing problems with multiple time windows

The presence of multiple time windows can complicate the design of optimisation algorithms. In
general, time windows have an impact on route duration. In turn, minimizing route duration can be
required to ensure feasibility or to reduce a route’s contribution to the objective function. In the case of
single time windows, route duration can easily be minimized in linear time using forward time slack, as
explained by Savelsbergh (1992). However when multiple time windows are involved, there is the extra
decision of selecting a time window for each customer. In certain cases, this involves increased time
complexity.

In some cases, minimizing route duration is required to assess route feasibility. Tricoire et al. (2010)
tackle the case where (i) each customer has multiple time windows, (ii) route duration is limited and
(iii) the time window at the depot does not match the limit on route duration. For a given sequence
of customers (route), the route duration can then be minimized by selecting optimal times for starting
service at each customer, which is done by an algorithm running in O(m2), where m is the total number
of time windows in the tour. Therefore, determining whether a route is feasible or not takes O(m2).
Souffriau et al. (2013) use a different approach to the same problem of determining route feasibility,
in the context of solving a TOP with resource constraints: customers with multiple time windows are
duplicated, each duplicate being subject to only one of the time windows at that customer. An artificial
resource is also created for each customer requiring duplication. This resource can only be consumed
once, so it is not possible to visit the same customer multiple times using different time windows. This
way, there is no added complexity when checking the time feasibility of a route; however, this requires
the handling of resource constraints, so there is still extra complexity to ensure route feasibility, albeit
in a different part of the algorithm.

In other cases, route duration has an impact on objective value. Belhaiza et al. (2014) consider such
a problem; they use a similar approach as the one from Tricoire et al. (2010), but with a different
algorithm for tour duration minimization. Christiansen and Fagerholt (2002) optimize the robustness of
routes, measured by the risk of arriving at certain times. In general, optimising the scheduling of a given
sequence of visits in a vehicle route is similar to scheduling a given sequence of tasks on a machine: the
decision variables are the start of service at each customer / for each task. A recent overview of existing
work in scheduling single routes with multiple time windows, as well as scheduling a given sequence of
tasks on a given machine, is present in Vidal et al. (2015).

The work presented in this article follows an approach similar to the one by Souffriau et al. (2013):
locations with multiple time windows are duplicated and at most one of them may be selected in a given
solution.

3. Problem Definition and Mathematical Model

In the PPP described in Section 1 we are given a set of tasks and associated locations where the tasks
can be performed. Both tasks and locations have (possibly multiple) associated time windows within
the planning horizon. To facilitate discussions in the remainder of the paper we introduce the notion
of “potential visits” which are feasible combinations of a task, an associated location, and one of the
task’s and location’s time windows which overlap by at least the task’s service time. By appropriately
combining the two time windows we end up with a single time window for each potential visit in which
the corresponding task can start. Multiple periods within the planning horizon (e.g. days) can be
implicitly encoded in multiple time windows associated to a task (leading to replicated potential visits)
and therefore do not need to be explicitly considered in the problem defined below.

3.1 Problem Definition

In the following we define the PPP in a formal way: We are given a directed graph G = (V,A) with
set V = {0, ..., n + 1} of potential visits, and arc set A ⊂ V × V . Visit 0 and n + 1 correspond to the
fixed start and end visit, respectively. Set T denotes the tasks including set T ⊆ T of mandatory tasks.
Potential visits V are partitioned into subsets V1, ..., V|T | with all potential visits in Vk corresponding to
the same task k ∈ T . Arc (i, j) ∈ A represents the situation when visit j is performed directly after visit
i, and tij denotes the travel time when going from i to j. Each potential visit i ∈ V is assigned a profit

pi ≥ 0, a service time si ≥ 0, and a time window [ei, li], 0 ≤ ei ≤ li. We denote by T̃k ⊆ T \ {k} the
set of tasks preceding task k. Further, we are given a minimum time gap ak′k ≥ 0 and a maximum time
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gap bk′k ≥ ak′k between each preceding task k′ ∈ T̃k and task k ∈ T . We refer the reader to Section 1
for the motivation of the two gap bounds. In case there is no minimum and/or maximum gap between
two related tasks we simply set the corresponding values to ak′k = 0 and/or bk′k =∞, respectively. Let

V jk
k′ ⊆ Vk′ be the set of visits i for which task k′ ∈ T̃k, visit j ∈ Vk, ak′k ≤ lj−ei−si and ej−li−si ≤ bk′k

holds, i.e. the set of visits of which exactly one has to be chosen if visit j is performed. We summarize
the input data in Table 1.

Table 1: Input data

V set of potential visits
0, n+ 1 start and end visit
A set of arcs
tij travel time on arc (i, j) ∈ A
pj profit for visit j ∈ V
sj service time for visit j ∈ V
[ej , lj ] time window for starting visit j ∈ V
T set of tasks
Vk set of visits corresponding to the same task k ∈ T
T ⊆ T set of mandatory tasks

T̃k ⊆ T \ {k} set of predecessor tasks which must be performed before task k

ak′k, bk′k minimum and maximum gap between task k′ ∈ T̃k and task k

V jk
k′ ⊆ Vk′ , k′ ∈ T̃k set of visits of which exactly one has to be chosen if visit j ∈ Vk is performed

A feasible solution for the PPP is a sequence of visits which starts with 0, performs a subset of
potential visits V , and ends with n+ 1. Without loss of generality, we assume that visit 0 starts at time
0 and visit n + 1 starts at time ln+1 (to maximize the free time in-between) which denotes the end of
the planning horizon. For each mandatory task k ∈ T exactly one visit in Vk and for each optional task
k ∈ T \ T at most one visit in Vk has to be performed. If a visit in Vk starts at time t then for each
preceding task k′ ∈ T̃k exactly one visit in Vk′ has to be performed before and needs to be finished within
the given minimum and maximum time gaps ak′k and bk′k, respectively, i.e. within the time interval
[t−bk′k, t−ak′k]. Due to time windows and minimum gaps between tasks with precedence relations, free
time might occur between consecutively performed visits. Without loss of generality, we assume that
free time is always consumed directly after finishing a visit before traveling to the next visit.

We consider two conflicting objective functions: f1 maximizes the total profit of all performed visits,
while f2 maximizes the total free time not consumed by service or travel time.

3.2 Mathematical Model

We use the following variables in our mathematical model:

• xij ∈ {0, 1},∀(i, j) ∈ A, denote binary decision variables for performing visit j directly after i.

• yj ∈ {0, 1},∀j ∈ V , denote binary decision variables for performing visit j.

• wj ≥ 0,∀j ∈ V \ {n+ 1}, denote continuous variables for the free time after visit j.

• zij ≥ 0,∀(i, j) ∈ A, denote continuous variables for the start time of visit j when coming directly
from visit i.

• zj ≥ 0,∀j ∈ V , denote continuous variables for the start time of visit j.
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Our model for the PPP is defined as follows:

f1 = max
∑
j∈V

pjyj (1)

f2 = max
∑
j∈V

wj (2)

subject to
∑
j∈Vk

yj = 1 ∀k ∈ T (3)

∑
j∈Vk

yj ≤ 1 ∀k ∈ T \ T (4)

∑
(0,j)∈A

x0j = y0 = 1 (5)

∑
(j,n+1)∈A

xj,n+1 = yn+1 = 1 (6)

∑
(i,j)∈A

xij =
∑

(j,i)∈A

xji = yj ∀j ∈ V \ {0, n+ 1} (7)

∑
(i,j)∈A

zij = zj ∀j ∈ V \ {0} (8)

zj + sjyj + wj +
∑

(j,h)∈A

tjhxjh =
∑

(j,h)∈A

zjh ∀j ∈ V \ {n+ 1} (9)

z0 = 0 (10)

zn+1 = ln+1 (11)

max{ei + si + tij , ej}xij ≤ zij ≤ ljxij ∀(i, j) ∈ A (12)∑
i∈V jk

k′

yi ≥ yj ∀j ∈ Vk,∀k′ ∈ T̃k,∀k ∈ T (13)

∑
i∈V jk

k′

zi + siyi ≥ zj − bk′kyj ∀j ∈ Vk,∀k′ ∈ T̃k,∀k ∈ T (14)

∑
i∈V jk

k′

zi + siyi ≤ zj − ak′kyj +M jk
k′ (1− yj) ∀j ∈ Vk,∀k′ ∈ T̃k,∀k ∈ T (15)

xij ∈ {0, 1} ∀(i, j) ∈ A (16)

yj ∈ {0, 1} ∀j ∈ V (17)

wj ≥ 0 ∀j ∈ V \ {n+ 1} (18)

The two objective functions (1) and (2) maximize the total profit and freetime, respectively. Con-
straints (3) and (4) ensure that each mandatory task is done exactly once and each optional task at most
once, respectively. Equalities (5)–(7) describe the tour which starts at visit 0, performs a subset of visits,
and ends at visit n + 1. Subtours are eliminated by the single-commodity flow system (8)–(12) on the
start time variables: Equalities (8) link arc with visit time variables. Flow conservation constraints (9)
state that the start time of a visit plus service time, free time, and the following travel time equals the
start time of the next visit. Equalities (10) and (11) set the times at the start and end visit, respectively.
Linking constraints (12) ensure the visits’ time windows. Inequalities (13) guarantee that all predecessor
tasks of j have to be performed before that task, while constraints (14) and (15) preserve the maximum
and minimum time gap between the tasks, respectively. The tightest value for the big-M constant in (15)
is defined as:

M jk
k′ = max

i∈V jk

k′

{li + si}

Finally, integrality constraints (16) and (17), and non-negativity constraints (18) define the domains of
the corresponding variables. Note that because of equalities (5)–(8) and (10)–(11) variables yj and zj
for visits j ∈ V can be eliminated from the model, but have been kept for better readability.
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4. Large Neighborhood Search for the PPP

We propose a bi-objective large neighborhood search (LNS) heuristic (BO-LNS) for solving the PPP.
Introduced by Shaw (1998) and later extended by Schrimpf et al. (2000) as ruin and recreate, LNS is a
metaheuristic framework based on the idea of iteratively destroying and subsequently repairing solutions
to explore large parts of the solution space and discover diverse local optima. A destroy operator
removes certain parts of a solution according to some predetermined selection strategy. The resulting
partial solution is then reconstructed into a full solution with a repair operator, commonly an insertion
heuristic. LNS has been shown to perform well on a variety of problem classes, particularly when many
constraints must be taken into account. The interested reader can find a more detailed discussion of the
related LNS literature in the review by Pisinger and Ropke (2010).

4.1 Outline of the proposed algorithm

Although the original LNS heuristic was conceptualized as a single-objective algorithm, its design
offers inherent synergy with bi-objective orienteering-type problems such as the PPP. One LNS iteration
corresponds to a single destroy operation removing several tasks, and a subsequent repair operation which
(re)inserts tasks one at a time until no further tasks can be planned. Since every insertion operation
strictly improves the profit objective and strictly worsens the free time objective, it is possible that
multiple mutually non-dominated solutions are found during one iteration of the LNS. We exploit this
property by evaluating Pareto-efficiency after every individual insertion, and updating the archive of
non-dominated solutions as necessary. Figure 1 visualizes this process.

Figure 1: Bi-Objective Large Neighborhood Search

To ensure proper diversification of the search, each of the solutions from the archive is successively
used as the starting solution for the LNS. Combined with the property explained above, every such
iteration generates a set of mutually non-dominated neighbor solutions N originating from the chosen
starting solution. During each iteration, the archive is updated as the Pareto non-dominated union of
itself and N . By using the archived solutions as starting points in each iteration, the LNS is able to
systematically explore all areas of the Pareto frontier.

Prior to any optimization, we perform some pre-processing of the input data. Specifically, each task
is associated with a set of “potential visits”, as described previously in Section 3. These sets of visits are
then used as the basic units of construction for all solutions. Each task’s visits are sorted according to
the start time of their time window in order to increase the efficiency of feasibility checks and insertion
operations. Likewise, the solutions in the archive are sorted in increasing order of objective f1 (in our
case profit), which helps to speed up dominance checks.

Algorithm 1 outlines the search strategy of the proposed bi-objective LNS. The archive A is initialized
with an empty solution (a schedule with no planned tasks). If mandatory tasks are to be scheduled,
then this solution is deleted from A after a feasible replacement is found in the first iteration. A parallel
archive S is used to keep track of the current set of non-dominated candidate solutions which have not
yet been used as starting solutions for the LNS. In each iteration, the solution s0 with the lowest f1
among the candidate solutions in S is copied, destroyed, and repaired by the LNS. The resulting set
N of mutually non-dominated neighbor solutions is examined for inclusion in the archive A. All new
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and Pareto-efficient solutions are also included in S, and dominated solutions are removed from S – in
contrast to a standard queue, this update policy guarantees that the LNS is initialized only with starting
solutions which are still non-dominated. If the starting solution s0 used in the current iteration did not
lead to any improvement of the overall archive A, then it is removed from S, otherwise it remains in S
and can be re-examined in subsequent iterations as long as it leads to improvement of A. The algorithm
continues until all candidate solutions in S have been used by the LNS at least once and did not improve
the archive A, at which point S will be empty.

One completion of the inner while loop corresponds to one exhaustive “pass” over the archive A.
This can be repeated until some termination criterion (e.g. run time, number of passes, etc.) has been
reached. In the practical application motivating our research, the search is continued indefinitely and
can be terminated at any time by the user.

We propose a modular framework for the definition of the destroy and repair operators based on
implicit permutations of general operator characteristics. These are described in more detail in the
following two sections.

Algorithm 1 Bi-Objective Large Neighborhood Search (BO-LNS)

x← ∅ . empty initial solution, a schedule with no tasks planned
A← {x} . archive of non-dominated solutions

repeat
S ← A . sorted list of candidate starting solutions
while S 6= ∅ do

x← s0 . the solution with lowest f1 in the sorted list S
x′ ← destroy(x)
N ← repair(x′) . set of mutually non-dominated neighbor solutions
for all n ∈ N do

A← A ∪p {n} . Pareto non-dominated union
if n is new and Pareto-efficient then

S ← S ∪p {n}
if A was not improved then

S ← S \ {s0}
until termination criterion
return A

4.2 Destroy Operator

The destroy operator removes parts of a solution based on the following parameters:

component definition of what constitutes a “part” of the solution
criterion on what basis these parts are evaluated
quantity how much of the solution is to be destroyed

A randomly selected permutation of these parameters is used in each iteration to determine the
behavior of the destroy operator. Pseudocode for the operator is presented in Algorithm 2.

Solution Components
Different definitions of “component” are used so that the destroy operator can work on different levels

of aggregation. We use “potential visits” as the lowest level of aggregation for the PPP. With this, the
following solution parts may be considered for removal by the destroy operator:

single individual, possibly unrelated visits
consecutive sequences of consecutive visits
same-day all visits on a particular planning day
chain visits connected by precedence relations

8



Algorithm 2 Modular Destroy Operator

input: a solution x

C ← ∅ . list of solution components to evaluate
R← ∅ . ranking list of the parts in C
n, nmax ← 0

y1 ← selectComponentType
y2 ← selectRankingCriterion
y3 ← selectDestroyQuantity

C ← determineSolutionComponents(x, y1)

for all components c in C do
r ← evaluateRanking(c, y2)
R← storeRanking(R, r, c)

nmax ← numberVisitsRemove(x, y3)

while n ≤ nmax do
c← takeOutWorstComponent(R)
x← removeComponent(c, x)
n← n + visitsInPart(c)

return x

The single component type allows for the most fine-grained selection of parts to remove, but it
offers no concept of relatedness as proposed by Shaw (1998). The consecutive component type considers
sequences of n consecutive visits, scheduled one immediately after the other in the solution. This provides
relatedness both in terms of routing (the locations are visited one after another) as well as timing (the
time windows either overlap or progress from earlier to later). Smaller values of the component length
parameter n allow for a more targeted selection, while larger values focus more on relatedness. If one
such consecutive part is selected for removal, all of its constituent visits are removed.

The same-day component type is more specific to the PPP and operates on a higher level of aggre-
gation. With this, entire days of tasks are considered for removal. Finally, the chain component type
targets sets of tasks connected through precedence relations and time delay constraints. Although indi-
vidual visits of a precedence chain may be removed with the previous definitions, this definition enforces
the removal and subsequent reinsertion of an entire chain, which may be necessary to find a sufficiently
different scheduling of the chain as a whole.

Removal Criteria
Provided that potential components for removal have been identified, the decision still has to be made

on which of them to remove. The following removal criteria are proposed to determine removal priorities:

min. forward shift how much the visits can be shifted in the current plan
min. time window flexibility how tight/relaxed the time windows are
min. profit/time ratio the trade-off between score and time
random a purely stochastic selection

The forward shift criterion measures how much a visit (and subsequent ones) can be pushed forward
without affecting the feasibility of the solution as a whole. A lower forward shift indicates a more
constrained part of the solution, and is therefore removed with higher priority. The time window flexibility
criterion is equal to the visit’s time window minus its service time (an average in the case of aggregate
parts). Although this figure is constant for each visit, each task has a number of visits to choose from, so
this criterion evaluates the visits actually chosen in the current solution. Parts with lower values indicate
potential or existing sources of bottlenecks.
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The profit/time ratio criterion estimates the relative score value of a solution part compared to how
it has been scheduled. It is calculated as the total score awarded by the component divided by the sum
of the travel times to/from the tasks and their service times. Free time within a segment is not counted
toward the total time. Short segments with high profit achieve the best scores, whereas long segments
with low profit are the worst. Finally, the random criterion assigns to each evaluated component a
removal priority randomly chosen from a uniform distribution ranging from 0 to 100.

The destroy operator removes from the solution the n components with the lowest criteria values,
where n depends on the destroy quantity parameter.

Destroy Quantity
This parameter determines how much of the solution will actually be destroyed. Since different

solutions will have different numbers of visits scheduled, and components of different sizes may be
considered for removal, this parameter refers to the percentage of individual visits to remove from those
currently scheduled. This ensures that the relative effect is more or less the same regardless of instance
size and of how empty or full the current solution is.

Experimentation showed that selecting a random value per iteration from a fixed uniform range of
5% to 30% worked well.

4.3 Repair Operator

The repair operator heuristically inserts unscheduled visits, one at a time, into an empty or partial
solution until no further insertions are feasible. As with the destroy operator, the behavior of the repair
operator is subject to three characteristics, randomly selected in each iteration of the LNS. The repair
parameters are as follows:

scope the pool of tasks which are considered for insertion
criterion which insertion positions are favored
order the order in which they are inserted

In order to maintain feasibility, the repair operator gives priority to missing mandatory and/or
precedent tasks if any are missing in the partial solution. We emphasize that this is the only form
of infeasibility which needs to be corrected in the proposed metaheuristic. It is guaranteed that at
least one feasible reinsertion exists for each of these missing tasks (namely the position from before the
destroy operation), but other insertion positions may be chosen depending on the repair parameters.
The pseudocode for the repair operator is shown in Algorithm 3.

Insertion Scope
The scope parameter determines the set of tasks which are considered for insertion by the operator.

Three variants are used:

all all currently unscheduled tasks
removed only the tasks removed by the previous destroy operation
neglected only the tasks which were unscheduled prior to the destroy operation

These three options facilitate varying degrees of intensification or diversification. Selecting from the
pool of removed tasks offers the highest degree of intensification, while the pool of neglected tasks imposes
diversification. The pool of all currently unscheduled tasks represents a mixture of both strategies. Note
that even if the set consists of only a single task, this does not imply that it will be reinserted at the
same position or using the same visit.

Insertion Criterion
The insertion criterion defines the measure used to evaluate and compare the many feasible insertions

for each visit. The following three criteria are proposed:

min. shift time the extra travel and service time required
max. total slack the potential slack time at the chosen position
max. time window flexibility time window size compared to the service time

10



Algorithm 3 Modular Repair Operator

input: a solution x, set of all tasks T

T ′ ← ∅ (set of candidate tasks for insertion)
I ← ∅ (ordered list of best insertions of the tasks in C)

z1 ← selectInsertionScope
z2 ← selectInsertionCriterion
z3 ← selectInsertionOrder

T ′ ← makeCandidateList(x, T, z1)

for all tasks t in T ′ do
i← getBestInsertion(x, t, z2)
I ← storeInsertion(i, I)

I ← sortInsertionList(I, z3)

N ← ∅
for all i ∈ I do

x′ ← tryToInsertVisit(i, x)
if x′ 6= x then

N ← N ∪ {x′}
return N

The shift time criterion measures by how much time subsequent visits must be shifted in order to
accommodate the insertion. It is the sum of the visit’s service time and the travel time to and from this
visit at the proposed insertion position, minus the current travel time between the visits before and after
the insertion position. Shifting visits to later positions may cause bottlenecks as tasks are pushed to
the end of their time windows. Smaller scores are thus favored as they reflect a more unobtrusive task
and/or timing.

The total slack criterion estimates how much the visit itself could be shifted during subsequent
insertions of other visits. The score for this criterion is the sum of the necessary waiting time before
starting the task, and the time between the end of the task and the visit’s closing time. Insertions with
lower total slack potential are more likely to become bottlenecks because they cannot be shifted as much.

The time window flexibility criterion does not depend directly on the current state of the schedule.
It is a static measure for each visit, equal to the visit’s time window length minus its service time. Each
task generally has many possible visits, so this criterion filters these possibilities for those which likely
offer greater temporal flexibility after other visits are removed and/or added in later iterations. If the
size of the visit’s time window allows it to be inserted at several positions, then one of them is randomly
selected. Visits with more flexibility in their time windows will generally have shorter service time,
wider time windows, or both. Inserting such visits is unlikely to trap the search prematurely in a local
optimum.

All three of these criteria focus exclusively on the timing aspects of the problem. However, the visit’s
profit can easily be incorporated into the insertion decision. To achieve this, the insertion scores are
weighted according to the profit of the visit, by multiplying (or dividing, in the case of minimum shift
time) the score by the profit. This yields a total of six insertion criteria.

Insertion Order
The order parameter determines in which order visits are inserted into the partial solution. Three

possibilities are proposed:

greedy the visit with the best insertion score is inserted first
GRASP one of the visits with the best insertion scores is randomly selected
random a purely stochastic ordering
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For each eligible task we identify the visit with the best score according to the selected insertion
criterion (detailed in the previous section) forming a list of visits for further processing. In the greedy
option, the visit with the best score in the list is inserted. With the GRASP (Feo and Resende, 1995)
option, a restricted candidate list of the RCL best visits is formed and one of them is randomly chosen
according to a roulette wheel selection (as in the more general GRASP heuristics). Note that for both
the greedy and GRASP variants the list of best visits for each task and the ordering must be recomputed
after each insertion. Finally, the random option shuffles the list of candidate tasks, and the tasks are
then inserted in the best way (with respect to the insertion criterion selected above) in this order until
all tasks have been examined.

Note that this parameter has no direct influence on which visits are chosen for each task, or on the
positions at which those visits are inserted. Those decisions are determined by the criterion parameter.

5. Computational Study

In this section we report and analyze the computational performance of the proposed BO-LNS. Our
test instances were generated on real-world-based information and are described in detail in Section 5.1.
The test settings used in all experiments are listed in Section 5.2. In Section 5.3 the quality of the
metaheuristic is evaluated by comparing the results to the optimal Pareto sets found with an exact
method on a set of smaller instances. Section 5.4 presents computational results on a set of larger
instances. The complete set of instances used and all detailed computational results are available as part
of the electronic version of this paper, or upon request from the authors.

5.1 Instance Data

The benchmark instances for our study are based on real-world information gathered during the
course of the research project by an analysis of 259 online interviews and two focus groups with 10
participants each. This analysis resulted in six instance groups (A to F) representing different types of
weekly schedule patterns. Five instances are generated for each group, yielding 30 instances which differ
in the number of tasks (ranging from 13 to 74), locations (15 to 3000), and precedence relations.

We generated small and large versions of these 30 instances, for 60 instances total. The set of
the 30 smaller instances has a planning horizon of 3 days and can be solved to optimality using the
mathematical model described in Section 3 embedded in an epsilon-constraint framework. The 30 large
instances consist of tasks for an entire week as well as a larger selection of locations.

With regard to the routing aspect of the problem, existing data sets of real locations in the city
of Vienna, Austria, were used. Appropriate subsets (e.g. supermarkets, restaurants, specialty stores)
are identified as available locations for different types of tasks, obtained from map data provided by
OpenStreetMap c© contributors. One particular location designates the decision-maker’s home, which
is always the start and end point of the schedule. Time window data on opening and closing times is
either supplied from map data of OpenStreetMap c© contributors, or estimated. The underlying distance
matrix was computed by Ariadne, a routing tool proposed in Prandtstetter et al. (2013) based on floating
car data from FLEET, an FCD system continuously working since 2003 and collecting data from about
3000 taxis in Vienna.

5.2 Test Settings

In the practical application, BO-LNS continues until the search is terminated by the user. In order to
provide a meaningful basis of comparison between all types of instances, here we allow the algorithm to
make only one pass over the archive, i.e. the search terminates once all solutions in the archive have been
used as starting solutions for the LNS without subsequently generating new non-dominated solutions and
improving the archive. This corresponds to Algorithm 1 without the repeat-until loop.

The parameter settings used for our study are listed in Table 2. Based on preliminary experiments, a
fixed range for the destroy intensity was chosen from dmin = 5% to dmax = 30% of the visits in the current
solution. These are the only parameters which have a global effect on the LNS, the remaining parameters
apply only to specific operator modules. For the destroy operator’s consecutive component type, the
segment length was set to a range between smin = 2 and smax = 5, chosen uniformly at random whenever
this component type is used. The repair operator’s GRASP insertion uses a restricted candidate list of
size RCL = 5, i.e. one of the best five insertions is performed uniformly at random in each step.
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Parameter dmin dmax smin smax RCL
Value 5 30 2 5 5

Table 2: Default Parameter Values

In general, it is not obvious how to gauge the quality of Pareto set approximations, even in comparison
to an optimal reference set. Zitzler et al. (2008) provide an overview of the approaches and indicators
proposed in the literature. We use two indicators to evaluate the quality of the Pareto set approximations
obtained with BO-LNS: the hypervolume and the multiplicative unary epsilon.

The hypervolume measures the area in objective space dominated by the approximation set. This
measure depends on a reference point, the choice of which also impacts the relative performance gaps
observed between different approximations. Although the origin is a valid reference point for double-
maximization problems such as the PPP, the point given by the minimum objective values among all
solutions for a given instance is generally much stricter, and this is what we use in our study. The
multiplicative unary epsilon indicator measures the minimal factor ε by which all objective values in an
approximation set would have to be multiplied (or divided in the case of minimization objectives) so that
no solution in the approximation set is dominated by the given reference set (Zitzler et al., 2003). Loosely
speaking, the epsilon indicator can be interpreted as the worst-case deviation to the reference set. Since
the hypervolume is affected by every solution in the approximation and the epsilon indicator only by the
“worst” solution, these two measures are often used together to make a more balanced comparison. For
clarity, we report both indicators in percentage terms; the hypervolume as a percentage of the optimal
value, and the epsilon indicator as a percentage gap, e.g. 25% corresponds to ε = 1.25. We report also the
cardinality of the approximation sets as well as the CPU time required to generate them with BO-LNS.

Our algorithm is implemented in Java and all computations were conducted on a personal computer
running Windows 10 with an Intel Core i7-4790 3.60 GHz processor with 8GB of RAM. Each of the 60
instances is solved 100 times.

5.3 Comparison with Exact Reference Sets

The subset of small instances is solved to proven optimality by CPLEX 12.6.2 on a single core of an
Intel Xeon 2643 with 3.3 GHz and 8 GB memory limit, using the model proposed in Section 3 embedded
in the ε-constraint framework presented in Mavrotas (2009). We were able to compute optimal reference
sets for all 30 small instances with an average run time of three hours, but highly depending on the
number of potential visits and especially the number of precedence relations among them.

Table 3 reports for each instance the maximum, average, and minimum values observed for the four
performance indicators: hypervolume, multiplicative unary epsilon, approximation set cardinality, and
CPU time in seconds. The columns on the left side list instance characteristics: the number of tasks
(T), the number of tasks with precedence constraints (P), the number of locations (L), and the resulting
number of feasible visits (V). The latter can be seen as a rough indicator of instance size.

Since we have solved all instances 100 times, we also present a more detailed statistical analysis of
the variation in performance. Figures 2, 3, and 4 visualize for each instance the variation in attained
hypervolume, unary epsilon, and cardinality, respectively. We omit CPU time since BO-LNS terminated
within 1 second in all test runs on this set of instances. The instances are sorted in order of improving
average-case performance for each indicator.

Hypervolume. The average hypervolume is well above 90% on all 30 instances, above 95% on all but three,
and above 97% overall. We can see from Figure 2 that this performance is consistent, as the deviation
from the average is generally very small – for all but one instance, the difference between the 25th and
75th percentiles is only two or three percentage points. In addition, the median hypervolume is nearly
always higher than the average, which indicates that the distribution is skewed toward higher values,
i.e. above-average performance. In fact, Figure 2 reveals that even most “outliers” actually represent
hypervolume values of 90% or higher. When it comes to the instances with the weakest hypervolume
performance, we notice that these are the instances with the lowest cardinality (D5, D3, D1). This is
not a surprise, because as the number of solutions in the approximation decreases, the hypervolume
becomes increasingly sensitive to the proportionally larger hypervolume contribution of each individual
solution, resulting in greater variability. Nonetheless, even on these instances BO-LNS achieves median
hypervolumes of at least 93%.
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Figure 2: Variation in Attained Hypervolume (%) per Instance (Small Instances)

Figure 3: Variation in Attained Unary Epsilon (%) per Instance (Small Instances)

Figure 4: Variation in Attained Cardinality per Instance (Small Instances)
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Figure 5: Normalized approximation set of test run with worst unary epsilon value (208.9%, Instance F5, Run 62)

Unary Epsilon. From Figure 3 we see that the median unary epsilon is 10% or lower for all but one
instance, and the average 10% or lower on all but three. As with the hypervolume, the deviation from
the average is generally very small, with an inter-quartile range of less than five percentage points on
nearly all instances. The median unary epsilon is also generally better than the average, which again
indicates that the epsilon performance of BO-LNS is skewed toward lower (better) values. This is
particularly true for the instances with the largest variability, such as F5 and C1.

With respect to outliers, we note that because the unary epsilon indicator represents a worst-case
deviation, its inferential power is strongest when the indicator is small – a low epsilon value implies that
all solutions in the approximation set are very close to the reference, which is the case for nearly all
the instances. In contrast, a large epsilon value can be observed even if just one solution is distant, and
indeed the epsilon indicator improves dramatically in those cases when that solution is removed, which is
counter-intuitive to the aims of multi-objective optimization. To emphasize this, we visualize in Figure 5
the approximation set with the worst unary epsilon value (208.9%) observed in the thousands of test
runs we conducted. The approximation set in question is clearly of high quality, and indeed, achieves a
hypervolume of over 97% of the optimum.

Cardinality. A larger number of trade-off solutions does not, on its own, imply a better approximation
of the true Pareto set. However, when considered in combination with a low unary epsilon indicator,
one may conclude that not only are more compromise solutions identified, all of them are close to the
reference set and therefore of high quality. And indeed, this observation can be made for most of the
instances examined here: BO-LNS generates an average of 20 to 40 trade-off schedules for most instances
while maintaining unary epsilon values below 10% or even 5% in many cases. Hence, with BO-LNS a
greater variety of compromise solutions does not come at the price of lower average quality.

CPU Time. As noted at the beginning of this section, all test runs on the smaller instances terminated
within 1 second. The performance analyzed above is thus all the more satisfactory. However, since the
optimal reference sets are known for this set of instances, we have also done additional tests to determine
the extent to which BO-LNS is able to converge toward those optima. By changing the termination
criterion to a maximum CPU time of just five seconds, BO-LNS was able to reach an average hypervolume
of over 99% and an average unary epsilon of just over 4% over all 30 smaller instances, and solved nearly
half of these instances to optimality.
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Figure 6: Variation in Attained Hypervolume (%) per Instance (Large Instances)

Figure 7: Variation in Attained Unary Epsilon (%) per Instance (Large Instances)

5.4 Instances with Approximate Reference Sets

This section reports computational results of the proposed BO-LNS on large instances for which no
exact optimal reference sets are known. We calculated approximate reference sets by running the algo-
rithm without any stopping condition (i.e. looping over the archive indefinitely) other than computation
time, which we limited to 1 hour per run. Each instance was solved 10 times with these settings, and
the final reference set was constructed as the non-dominated union of all solutions found over all runs
combined. These approximate reference sets are used here as the benchmarks for evaluating the relative
hypervolume and multiplicative unary epsilon indicators for the large instances.

Computational results for the 30 large instances are presented in Table 4. As before, we conduct
100 runs per instance and report the maximum, average, and minimum indicator values observed, as
well as details on the instance characteristics. The variation in performance for the various indicators is
visualized in Figures 6, 7, 8, and 9.

Hypervolume. BO-LNS achieves an average hypervolume of over 95% for nearly every instance, and does
so in a reliable way – Figure 6 shows that almost all of the inter-quartile ranges are smaller than two or
three percentage points. In fact, even the outliers are virtually always above 90%. The single exception
to this trend is instance A3, and the reason is again the very small cardinality of the Pareto sets for this
instance. In practice, when computation time is the termination criterion, this behavior is offset by the
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Figure 8: Variation in Attained Cardinality per Instance (Large Instances)

Figure 9: Variation in Required CPU Time per Instance (Large Instances)

19



very fast run time on such Pareto sets, allowing several searches over a smaller one in the same time as
one search over a larger one. Nonetheless, even on this instance BO-LNS still achieves nearly 90% of the
hypervolume on average; the main difference is the larger variability when compared to instances with
larger Pareto sets.

Unary Epsilon. The average unary epsilon is three percent or lower for every instance. As with the
hypervolume, BO-LNS is largely consistent in achieving this level of performance, with nearly all inter-
quartile ranges spanning only two percentage points or less. Although performance is generally more
variable on the instances with worse average performance, even the outliers virtually always represent
epsilon values of less than 10%. Since these values are all quite low in absolute terms, we can conclude
that BO-LNS reliably identifies solutions very close to the best known reference sets.

Cardinality. We can see from Figure 8 that the number of trade-off schedules varies widely depending
on the instance, ranging from just an average of 11 (instance A3) all the way up to 93 (instance E4). It
also appears that the variability increases together with average size. However, in absolute terms this
variation is rather small; for any given instance, the inter-quartile range is around 10 solutions or less,
which roughly corresponds to differences of ±5 from one run to the next. These are relatively minor
differences when the Pareto sets already have over 40 solutions for half the instances. Given the rather
large Pareto sets on these instances and the low values of the unary epsilon indicator, it is fair to say
that the quality of the approximations identified by BO-LNS remains similar also when the size of the
instances and Pareto sets increases.

CPU Time. For most of the larger instances (25 out of 30), BO-LNS requires less than 60 seconds of CPU
time. A closer comparison with the instance characteristics in Table4 reveals that the CPU times are
strongly related to the number of tasks and precedence relations, as well as Pareto set cardinality. The
most time-consuming instances (subsets C and E) have the most tasks and by far the most precedence
relations, and they also yield the largest Pareto sets (cf. Figure 8). The opposite relationship can be
observed with the A and B instances.

One counter-intuitive observation is that the more difficult subsets C and E have the fewest feasible
visits, with just over 6,000 for the largest instance, compared to well over 10,000 for most of the other
instances. It was expected that the number of visits would be a major factor for difficulty, since this
figure determines the size of the search space. However, with each subsequent insertion of a task, many
of these visits become infeasible due to either time windows or precedence relations. The number of
visits therefore has only a moderating effect on run time.

Finally, it was a major objective for the practical application that the algorithm converges rapidly to
a representative solution set. Since the search can be stopped at any time by the user, it is important
that reasonable trade-off schedules are found in a short time. Individual schedules can then be further
optimized if time is available. This was one reason why the standard epsilon-constraint method was not
suited to our application.

In order to better illustrate the convergence of our BO-LNS, we plot in Figure 10 the hypervolume
and unary epsilon indicators as a function of search progress, averaged over all 60 instances and 6000 test
runs. A search progress of 0% corresponds to the first iteration, and 100% to the final approximation
set returned upon termination.

We can see that in the first iteration, BO-LNS achieves an average hypervolume of around 81% with a
unary epsilon of around 10%. The first 10% of the search then yields the largest improvement, increasing
the hypervolume to above 90% of the final value, and reducing the unary epsilon gap to below 7%. The
remainder of the search further improves these figures, but at a steadier and less dramatic pace. Even if
we ignore the 30 small instances with run times below 1 second, the average time required to reach the
10% point is only around 5 seconds, and virtually never larger than 30 seconds. We therefore conclude
that the LNS converges rapidly to a representative set of schedules, and is capable of further improving
them as long as extra time is available.
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Figure 10: Hypervolume and Unary Epsilon Development as a Function of Search Progress

6. Conclusion

In this article, we tackle personal activity scheduling for mobile freelancers or other users with com-
plex daily schedules and trips. For that purpose we define the Personal Planning Problem (PPP) – a
bi-objective generalization of the orienteering problem. Aspects of generalization include multiple possi-
ble locations for a given task, multiple time windows, multiple periods, minimum and maximum delays
between tasks, and precedence relations between tasks. The two objectives considered are the maximiza-
tion of profit and of free time; they are naturally conflicting, and capture the natural tradeoff between
scheduling more tasks and having more leisure time.

The PPP is modeled as a mixed integer linear program based on single-commodity flows and exper-
iments show that small instances can be solved exactly, using the well-known epsilon-constraint frame-
work. However, no instance of a relevant size for the real-world problem could be solved exactly with this
approach. For that purpose, we developed a bi-objective large neighborhood search (BO-LNS) meta-
heuristic. We exploit the fact one destroy/repair iteration can generate several mutually non-dominated
solutions, since partially destroyed solutions are still feasible in orienteering-type problems. By itera-
tively using non-dominated solutions as starting solutions, our BO-LNS is able to explore and improve
the entire Pareto frontier. In addition, we propose a modular framework for the construction of a variety
of destroy and repair operators.

Extensive computational experiments show that our BO-LNS can efficiently handle the many side-
constraints given by the real-world problem, and produces highly efficient and representative solution
sets in a consistent and reliable way. Smaller benchmark instances for which exact solutions are known
are solved nearly to optimality within a few seconds. Tests on larger instances confirm the consistency
in solution quality and indicate that the algorithm scales well.

BO-LNS is currently implemented in a prototype mobile application. Although a number of realistic
constraints are already considered, the underlying model and functionality can still be enriched. For
instance, a user may want to specify that lunch locations have to be different every day. Such features
can be modeled as resource constraints, and it constitutes a promising perspective in order to make our
solution approach more comprehensive to end users.

Computational Results

The instances generated for this study, as well as detailed results for all instances, are available as
part of the online version of this article, or upon request from the authors.
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