

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Influence Maximization in Social Networks:

A survey on variants of the least cost influence problem“

verfasst von / submitted by

Agnes Rymarz, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2017 / Vienna 2017

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 920

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

 Quantitative Economics, Management and Finance

Betreut von / Supervisor:

Mitbetreut von / Co-Supervisor:

Dr. Markus Leitner

Dr. Mario Ruthmair

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt habe. Es
wurden nur die in der Arbeit ausdrücklich genannten Quellen und Hilfsmittel benutzt.
Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches kenntlich
gemacht.
Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde
vorgelegt und auch noch nicht veröffentlicht.

Wien, Oktober 2017
Ort, Datum Agnes Rymarz

iii

iv

Abstract

The purpose of this thesis is to give an introduction to the theory of influence maximiza-
tion in social networks and how this issue can be modeled mathematically. Information
diffusion models have already existed before social networks became popular. In 1978
the important "Threshold model" was introduced by Granovetter.
From a marketing point of view influence maximization can be important when compa-
nies want to advertise their products via social networks. Investing in a few people at
the beginning can trigger an information cascade and cause evermore people to get in-
fluenced. This viral marketing strategy builds on the word-of-mouth propaganda. The
crucial question is: Who should companies address at the beginning to influence the max-
imum number of people? The "Target Set Selection" problem deals with this question.
An extension of the Target Set Selection problem is the Least Cost Influence Problem.
The advantage of this variant is that companies can not only select people as a whole, but
also target people partially which can be done e.g. by distributing discount coupons. The
Least Cost Influence Problem can be summarized by the following question: which peo-
ple should get how much initial partial incentives to influence a given fraction of people
such that the incentives are minimized?

v

vi

Zusammenfassung

Das Ziel dieser Arbeit ist es, eine Einführung in die Theorie der Maximierung von Ein-
fluss in sozialen Netzwerken zu geben und zu zeigen, wie dieser Aspekt mathematisch
modelliert werden kann. Modelle zur Informationsverbreitung hat es bereits gegeben,
bevor soziale Netzwerke populär wurden. 1978 wurde eines der wichtigsten Modelle,
nämlich das Threshold Model, eingeführt.
In der Marketingbranche kann Einflussmaximierung relevant sein, wenn Firmen ihre
Produkte über soziale Netzwerke bewerben. In einige wenige Leute am Anfang zu in-
vestieren, kann eine Kaskade auslösen und dazu führen, dass immer mehr Leute bee-
influsst werden. Diese viral-marketing-Strategie lebt von der Mundpropaganda. Die
wesentliche Frage dabei ist, welche Leute am Anfang ausgewählt werden sollen, sodass
am Ende die meisten Menschen beeinflusst sind. Das Target Set Selection Problem be-
handelt diese Frage.
Eine Erweiterung vom Target Set Selection Problem ist das Least Cost Influence Problem.
Der Vorteil von dieser Variante ist, dass Firmen nicht nur Leute als Ganzes auswählen
können, sondern auch nur zum Teil. Das kann zum Beispiel durch Verteilen von Ra-
battgutscheinen erreicht werden. Das Least Cost Influence Problem kann in einer Frage
zusammengefasst werden: Welche Personen sollten am Anfang wieviel bezahlt bekom-
men um einen vorgegebenen Anteil an Personen zu beeinflussen, sodass die Zahlungen
minimiert werden.

vii

viii

Acknowledgement

First of all, I want to thank my both supervisors for the great support at writing my thesis.
Whenever I had a question or needed help they made effort to give me good advices. The
working atmosphere was always very pleasant.
Furthermore, I want to thank my family, especially my parents, for supporting me in my
education and making such a study possible. They always believe in me and my skills.
Knowing to have such a strength backing is worth a lot.
Many thanks go to my friends who gave me always a good balance to my university life.
It was very important for me to regain strength with my friends during the whole course
of studies. They made the time of my study to an awesome era.

ix

x

Contents

Eidesstattliche Erklärung iii

Abstract v

Zusammenfassung vii

Acknowledgement ix

Contents xi

List of Figures xv

List of Algorithms xvii

Abbreviations xix

1 Introduction 1
1.1 Motivation . 1

1.2 Structure of the thesis . 3

1.3 Preliminaries . 4

2 Basic models for the diffusion of information 5
2.1 The Threshold model . 5

2.1.1 The Linear Threshold model . 6

2.1.2 The General Threshold model 6

2.1.3 The Submodular Threshold model 7

2.2 The Cascade model . 7

2.2.1 The Independent Cascade model 7

2.2.2 The General Cascade model . 8

2.2.3 The Decreasing Cascade model 8

xi

3 The Target Set Selection problem and its weighted version 9
3.1 The Target Set Selection problem . 9

3.1.1 Definition . 9

3.1.2 Approximability . 10

3.2 The Weighted Target Set Selection (WTSS) problem 11

4 The Least Cost Influence Problem 13
4.1 Formal definition . 14

4.2 Special case of tree networks . 15

4.2.1 Least Cost Influence Problem (LCIP) on trees with equal influ-
ence of the neighbors and 100% adoption 16

4.2.2 Dynamic Programming Algorithm 19

4.2.3 Greedy Algorithm . 28

4.2.4 Totally unimodular (TUM) formulation of the LCIP on trees . . . 29

4.3 LCIP on more general settings . 32

4.3.1 Approximability . 32

4.3.2 Extension of the TUM-approach 33

4.3.3 LCIP on general graphs . 34

5 The Least Cost Influence problem in multiple social networks 35
5.1 Introduction . 35

5.2 Definition of the problem . 36

5.3 Coupling schemes . 37

5.4 Lossless coupling schemes . 38

5.4.1 Clique coupling scheme . 38

5.4.2 Star coupling scheme . 40

5.4.3 Reduced coupling schemes . 42

5.5 Lossy coupling shemes . 43

5.6 Evaluation of the coupling schemes . 45

6 Least Cost Rumor Blocking 47
6.1 Introduction . 47

6.2 Models . 48

6.2.1 Opportunistic One-Activate-One (OPOAO) Model 49

6.2.2 Deterministic One-Activate-Many (DOAM) Model 49

6.2.3 Multi-Campaign Independent Cascade model (MCICM) 49

6.2.4 Campaign-Oblivious Independent Cascade model (COICM) . . . 49

6.3 Problem definition . 50

xii

6.4 Complexity results and approach of possible solutions 51
6.5 Evaluations . 52

7 Conclusion 55

Bibliography 57

xiii

xiv

List of Figures

4.1 Initial network . 16
4.2 First star network . 16
4.3 Second star network . 17
4.4 A tree network . 19
4.5 Case 1: d θ(ρ)

d(ρ)
e leaf nodes in S are paid 20

4.6 Case 2: d θ(ρ)
d(ρ)
e − 1 leaf nodes in S are paid 21

4.7 Case 1, Type 1 . 23
4.8 Case 1, Type 2 . 23
4.9 Case 2 . 24
4.10 Initial given graph . 25
4.11 Star compressed into node 5 . 26
4.12 Star compressed into node 10 . 26
4.13 Case 1 . 30
4.14 Case 2 . 31

5.1 Facebook, Instagram and Twitter . 39
5.2 Representation with gateway vertices . 40
5.3 Influence among one clique . 41
5.4 Influence in form of a star . 42
5.5 The coupled network via easiness parameters 45

xv

xvi

List of Algorithms

1 Dynamic Programming Algorithm [Gunnec et al., 2013] 20
2 SolveStar [Gunnec et al., 2013] . 22
3 CompressStar [Gunnec et al., 2013] . 24
4 TotalCost [Gunnec et al., 2013] . 25

xvii

xviii

Abbreviations

TSS Target Set Selection

LCIP Least Cost Influence Problem

WTSS Weighted Target Set Selection

TUM totally unimodular

DAG directed acyclic graph

OPOAO Opportunistic One-Activate-One

DOAM Deterministic One-Activate-Many

LCRB Least Cost Rumor Blocking

LCRB-P Least Cost Rumor Blocking under opportunistic model

LCRB-D Least Cost Rumor Blocking under deterministic model

BFS Breadth First Search

MCICM Multi-Campaign Independent Cascade model

COICM Campaign-Oblivious Independent Cascade model

EIL eventual influence limitation

IML Maximizing Influence while unwanted target users limited

xix

xx

1. Introduction

1.1 Motivation

Marketing is a very important feature for companies to advertise their products. Pre-
viously, customers have been seen as isolated individuals, but nowadays the interaction
and potential influence among people play an important role. Domingos and Richardson
[2001] are one of the first who considered not only the expected value from the sales to
the customer itself, but also the so-called network value of customers which captures in-
formation about how much they influence other potential buyers. The reason why such
a network value has to be taken into account is that people these days can influence a
large number of other potential customers via social networks. In the past, the buying
decision of a person mainly depended only on her/himself, but now, this decision depends
on recommendations and references from family, friends and colleagues. Through social
networks influencing gets easier. Social networks can be represented very well through
graphs: nodes describe people and edges denote the connections between the individuals.
If someone posts on a social network that he bought a certain product and is completely
happy with it, all of his friends see that and may consider buying this product as well.
This influence phenomenon is not only observed for products, but also for opinions, ideas,
conventions and technologies. Furthermore, the spread of people one can reach via social
networks is extremely large and thus social networks play an important role as a medium
of information propagation. This new area of advertising, where the diffusion of innova-
tions over a social network is crucial, is called viral marketing, because of its resemblance
to the enlargement of an epidemic. Word-of-mouth advertising can be much cheaper than
traditional marketing strategies since a company must only invest in the initial target set
and then the process is left to its own. Furthermore, people appreciate personal advices
or opinions more than those from a company directly. [Richardson and Domingos, 2002]

There are several authors who have been concerned with analyzing the dynamics of adop-
tion in a network. In literature, this problem is referred to as the "influence maximization
problem". Kempe et al. [2015] survey the fundamental models for the diffusion process

1

in networks such as the Threshold models and the Cascade models, which are shown in
detail in Chapter 2. Whereas Domingos and Richardson [2001] model the problem in a
probabilistic setting, Kempe et al. [2015] use a deterministic framework.

Many companies take advantage of knowing that people influence others and use a new
viral marketing strategy to advertise their assortment. They target those individuals from
whom they think they are highly influential and give them, for example, free samples.
However, now the question is: who should they target? Which individuals would share
the information about the product the most and can trigger an information cascade? The
aim of this cascade is to cause evermore people to adopt. Since these people are part of a
social network with complex relationships, this is not a trivial problem anymore and has
become a central research topic. [Kempe et al., 2015]
Furthermore, companies certainly want to keep down their costs. Hence, the goal is to in-
fluence as many people as possible while minimizing the advertising costs. The decision
problem of choosing the initial people who should get influenced is called the Target Set
Selection (TSS) problem. There are various formal definitions and variants of the TSS
problem which will be defined in Chapter 3.

Raghavan and Zhang [2015] describe a weighted version of the TSS problem where each
node is associated with a weight which captures the property that different individuals
need different levels of effort to adopt. The weighted version of the TSS problem is dis-
cussed shortly in Chapter 3.

In the course of the research some extensions of the TSS problem arose. An extension
of the TSS problem is considered by Gunnec et al. [2013] and is called the Least Cost
Influence Problem (LCIP). The advantage of this version is that companies are allowed
to target people with partial incentives which means that they do not have a binary choice
anymore to either target an individual or not. A company can decide either to target a
person in the full amount, which can be interpreted as giving him a product for free, or
target a person partially in terms of giving him a discount coupon. The advantage is that
companies can maybe influence a wider spread of people with the same budget. [Gunnec
et al., 2013] In Chapter 4 the LCIP is formally introduced and a way to solve the problem
is presented.

Additionally, people often join not only one social network, but several networks. This
is an important observations since it can be advantageous to influence a person which is
part of more networks, because the person can transmit information from one network to

2

another network and hence reach a new range of people. Therefore, not only the influence
power in one network has to be taken into account, but the problem has to be modeled in
a new way. In Chapter 5 the corresponding approach of Zhang et al. [2016b] is described.

Furthermore, social networks serve not only for the diffusion of true information but
rumors can spread very fast as well. Methods how these rumors can be stopped are sought,
because misinformation can have serious consequences. [Fan et al., 2013] In Chapter 6,
models which help to stop the spread of whisper are introduced.

1.2 Structure of the thesis

In Chapter 2 the basic models for information diffusion, such as the Threshold model and
the Cascade model, are defined and explained. Some results about the approximability of
the influence maximization problem for these models are summarized as well.

Chapter 3 is about the Target Set Selection (TSS) problem. First, the problem is defined
and then some approximability results are summarized. The description of the Weighted
Target Set Selection (WTSS) problem concludes the chapter.

The Least Cost Influence Problem (LCIP) is the topic of Chapter 4. At the beginning, the
problem is defined and then some special cases where the underlying graphs are trees or
complete graphs are considered. Two algorithms for special cases are explained in detail
and illustrated with examples. Afterwards, it is described how the theory can be extended
to general graphs.

The focus of Chapter 5 lies on the LCIP in multiple social networks. First, the problem is
defined formally. Then, the core of the chapter is the study of so-called coupling schemes
which aim to couple multiple networks into one network. This is advantageous since the
theory for single social networks can now be applied. The coupling schemes are demon-
strated with examples. At the end of the chapter, some results on the experimental work
of Zhang et al. [2016b] are summarized.

In Chapter 6 the Least Cost Rumor Blocking (LCRB) problem is presented. At the be-
ginning new diffusion models are introduced. Afterwards, the LCRB problem is defined
formally. Some complexity results and possible solution approaches are explained as
well. The chapter ends with the evaluation of the proposed solution approaches.

3

1.3 Preliminaries

In my thesis I assume basic knowledge about graph theory. The reader should be familiar
with the concept of directed and undirected graphs as well as with subgraphs and the de-
gree of a node. Relevant fundamentals can be found for example in West [2001], Bollobas
[2012] and Trudeau [2013].

Since I will use mixed integer programming models I want to refer to Jünger et al. [2009],
Conforti et al. [2014] and Garfinkel and Nemhauser [1972] who give a good introduction
to integer programming models.

4

2. Basic models for the diffusion of in-
formation

To explain the way how diffusion of information works, mathematical models are needed.
In this section, I will review the most important existing models, namely the Threshold
model, the Cascade model, and their variants. These models build the foundation for later
work, because later formulations of problems are based on such models. Kempe et al.
[2003;2005] build a milestone in this research area and summarize these two conference
articles in the revised work "Maximizing the spread of influence through a social network"
that has been published in 2015. This chapter mainly builds upon this revised paper.
Next, the influence maximization problem which asks for the initial active set with the
most influence power is formally introduced. Kempe et al. [2015] define the influence
maximization problem as the task to find a set of k nodes which leads to the highest
expected number of influenced nodes at the end, where k is a given number. In general,
the influence maximization problem is NP-hard to approximate within a factor of n1−ε

where n is the number of nodes and ε > 0. [Kempe et al., 2015]

2.1 The Threshold model

Kempe et al. [2015] describe the fundamental Threshold model for networks which builds
a basis for many other diffusion models. They refer to Granovetter [1978] and Schelling
[1978] which were among the first who described Threshold models. Macy [1991], Va-
lente [1995] and Young [2006] also work with related models.
The starting point of the model is a directed graph G = (V,E) which represents a social
network where the nodes are people and arcs the relationships between them. The nodes
of this graph can either be inactive, which means that a person has not yet adopted the
product or idea, or active, which says that a person is already influenced. Nodes can only
switch from inactive to active but not in the other direction, which means that once a per-
son is convinced of an innovation it can not change its opinion anymore. The goal is that
as many nodes as possible become active. All models assume that the more neighbors are

5

active, the more likely the node itself becomes active.

2.1.1 The Linear Threshold model

In this model an incoming neighbor u of node v (i.e. (u, v) ∈ E) influences the node
v with a weight w(u, v) ∈ [0, 1]. Each node v is endowed with a specific threshold
θ(v) ∈ [0, 1], which is the boundary that has to be reached to activate node v. We can
interpret the threshold as an individual level of convincement of the specific node. If the
sum over the particular weights w(i, v) ∈ [0, 1], where i runs through the set of active
incoming neighbors of v, equals or exceeds the threshold, then v gets active. Formally,
this is described as: ∑

i is an active neighbor of v

w(i, v) ≥ θ(v)⇒ v gets active

This means that the overall influence from active neighbors must be larger or equal to the
particular threshold to convince the person. One can now formulate a diffusion process as
the following. We start with an initial active set of nodes and at every discrete time step
t the active nodes stay active and other nodes may become active if their thresholds are
reached. At every time step the state of the nodes are updated. The process stops if either
all nodes are active or no more activations are possible. [Kempe et al., 2015]

The thresholds can either be a known deterministic value, a random value or have to be
calculated as part of the optimization problem. However, for simplifying reasons, Kempe
et al. [2015] assume that the thresholds θ(v) are uniformly distributed over the interval
[0, 1], so one can interpret the particular thresholds as the average over all possibilities.
Kempe et al. [2015] show that the influence maximization problem is NP-hard for the
Linear Threshold model with random thresholds, but can be approximated in a rather
good way with a greedy approximation algorithm. Two further variants of the Threshold
model will be discussed in the following.

2.1.2 The General Threshold model

In this model the activation procedure is the same as in the linear model, but with the
only difference that the influence of the neighbors may not be linear but could depend on
any monotone function fv which assigns subsets of neighbors of node v to real numbers
between 0 and 1. We need an initial condition fv(∅) = 0, which ensures that v cannot get
active if it has no active neighbors. The node v gets active in step t if fv(S) exceeds the
value of the uniformly chosen threshold θ(v) where S describes the set of active neighbors

6

of v at time t− 1. The Linear Threshold model is a special case of the General Threshold
model with the function fv(S) = min(1,

∑
u∈S

w(u, v)). [Kempe et al., 2015]

2.1.3 The Submodular Threshold model

The Submodular Threshold model is a special case of the General Threshold model, which
requires the function fv(S) to be submodular. A function fv is defined to be submodular
if "the marginal gain from adding an element to a set S is at least as high as the marginal
gain from adding the same element to a superset of S" [Kempe et al., 2015]. Thus, for all
elements v and all pairs of sets S ⊆ T we have: fv(S ∪ v)− fv(S) ≥ fv(T ∪ v)− fv(T).
This special case makes sense since the influence of a particular node is lower when we
add a node to a bigger set than to a smaller set. Mossel and Roch [2010] prove that there
exists a polynomial-time algorithm which approximate the problem within a factor of
1− 1

e
for this model.

2.2 The Cascade model

The Cascade models are based on research of interactive particle systems which are for
example considered by Liggett [1985] and Durrett [1988]. Goldenberg et al. [2001a] and
[2001b] use the approach of cellular automata methods to consider Cascade models in
marketing settings. Easley and Kleinberg [2010] study cascading behavior in networks
based on coordination games.
Kempe et al. [2015] define three types of Cascade models, namely the Independent, the
General and the Decreasing Cascade model which are presented in the following.

2.2.1 The Independent Cascade model

This is the simplest among all Cascade models. As in the Threshold model we assume that
nodes can either be active or inactive and once a node got active it stays active. The setting
is in a discrete time frame and we start with an initial active set of nodes. An active node
v has once the chance to influence an inactive neighbor w with a success probability pv,w
which is part of the input. It is important to note that the success probability is independent
from all previous activation attempts through other nodes. Either the influencing process
succeeds and node w gets active, or node w stays inactive and node v can never try again
to affect node w. However, other active neighbor nodes of w can try to influence w. If
two nodes want to activate a certain node at the same time step, then the sequence of
their attempts to influence that node is arbitrary. The process stops if no more activations

7

are possible. Kempe et al. [2015] show that it is NP-hard to approximate the influence
maximization problem for the Independent Cascade model within a factor of 1− 1

e
.

2.2.2 The General Cascade model

The General Cascade model works like the Independent Cascade model with the only
difference that the success probability now depends on the history. The propensity of a
node to adopt an innovation may change with the number of nodes which have already
tried to influence it. This is a natural extension since a person is more likely to adopt a
product if more people in the surroundings already have adopted. Formally, Kempe et al.
[2015] define an incremental function pv(u, S) ∈ [0, 1], where S describes the subset of
v′s neighbors that have already tried and failed to activate v, and u /∈ S. Furthermore, the
incremental function is required to be order-independent, which means that the sequence
in which the other neighbors already have attempted does not change the success prob-
ability. Formally, let S = {u1, u2, . . . , u|S|} be the set of neighbors which have already
tried to activate v. Then, order-independent means that

|S|∏
i=1

(1− pv(uπ(i), {uπ(1), uπ(2), . . . , uπ(i−1)}) =
|S|∏
i=1

(1− pv(uϕ(i), {uϕ(1), uϕ(2), . . . , uϕ(i−1)})

for any pairs π and ϕ of permutations of {1, . . . , |S|}. If pv(u, S) is constant and does not
depend on S, we obtain the Independent Cascade model. Kempe et al. [2015] show that
the General Threshold model and the General Cascade model are equivalent by defining
appropriate activation functions and success probabilities. However, the two distinct per-
spectives to look at the same random process are important for Kempe et al. [2015] for
their further work to prove some statements about approximation guarantees.

2.2.3 The Decreasing Cascade model

Similar as in the Submodular Threshold model we have here also a diminishing influence
when the size of the influencing set gets larger. The Decreasing Cascade model is a special
case of the General Cascade model in which we require a further condition. Kempe et al.
[2015] call this prerequisite the "diminishing influence condition": pv(u, S) ≥ pv(u, T)

whenever S ⊆ T , which means that the success probability pv is a non-increasing func-
tion with the set of neighbors who have already tried to activate v. Kempe et al. [2015]
show that the Decreasing Cascade model is a special case of the Submodular Threshold
model. For the Decreasing Cascade model Kempe et al. [2015] prove a similar approx-
imation result as for the Independent Cascade model, in fact that there is a polynomial
time algorithm that can approximate the problem within a factor of 1− 1

e
.

8

3. The Target Set Selection problem and
its weighted version

3.1 The Target Set Selection problem

In this chapter, the Target Set Selection problem is formally defined and some results
about the approximability of this problem are given. Since there is already a master’s
thesis from Chronowski [2014] which covers this problem and its hardness results in
detail, this part will be rather short in this thesis.

3.1.1 Definition

There is not only one definition of the problem, but various authors described the TSS
problem in several frameworks and with different proposals. The main features in which
the different formulations vary are the underlying graphs and whether there are constraints
for the target set respectively the set of activated nodes or not. A further deviation between
the approaches is the threshold selection.

Chen [2009] bases his formulation of the TSS problem on the Linear Threshold model
and uses deterministic threshold values, while Kempe et al. [2015] use random values.
Chen [2009] formulates the problem as follows. Let G = (V,E) be a directed graph,
deg(v) the degree of node v ∈ V and θ(v) ∈ N the threshold value for node v ∈ V such
that 1 ≤ θ(v) ≤ deg(v). The process starts with all vertices inactive and we choose a
subset of nodes to be active in the beginning. At every time step an inactive node v gets
active if at least θ(v) of its neighbors are active. The process stops if no more activations
are possible or if all nodes are active. Chen [2009] focuses on the task to find a target set
of minimum size such that at the end of the process all or a certain fraction of nodes are
active.

In contrast, Kempe et al. [2015] consider the problem to find a set of k initially active

9

nodes to maximize the influence over the network, where k is a given number. A further
difference is that Kempe et al. [2015] focus on randomly chosen thresholds, different than
Chen [2009] who considers the case of explicitly given deterministic thresholds.

Ackerman et al. [2010] define the TSS problem on a directed graph as the task to find an
initially active target set, where its size may not exceed a given number k such that at least
a given number of m nodes will be activated. Note that such a target set does not exist
in every instance. Furthermore, they refer to the variant of the TSS problem defined by
Chen [2009] as the minimum target set problem and to the variant by Kempe et al. [2015]
as the maximum active set problem.

Nichterlein et al. [2013] formulate the TSS problem on an undirected graph G = (V,E)

in the following way. Given threshold function θ : V → N and an integer k ≥ 0 is there
a target set S ⊆ V for G of size at most k that allows to activate all vertices in G?

3.1.2 Approximability

In the following section, some approximability results for variants of the TSS problem are
given. Not to many details will be given, because the focus of this thesis lies rather on the
models and not on the approximability results.

Chen [2009] provides a polylogarithmic lower bound on the approximation ratio for the
TSS problem. Furthermore, he shows that the Target Set Selection problem with deter-
ministic thresholds gets intractable if there are no simplifying assumptions. Chen [2009]
shows that the problem remains NP-hard, even for the special case of a bounded bipartite
graph where the thresholds are at most two.

A further case which is considered in the literature is the case of majority thresholds.
This means that a node gets active if at least half of its neighbors have adopted, formally
θ(v) = ddeg(v)

2
e for each node v ∈ V . Peleg [2002] proves that the TSS problem with

majority thresholds is still NP-hard. Chen [2009] gives evidence that this special case
does not admit a better approximation ratio than in the general case.

Dreyer and Roberts [2009] consider the case of constant thresholds which means that the
threshold is the same for every node. They prove that the decision of choosing the target
set in the TSS problem is NP-complete if the threshold value is at least three.

However, when the underlying graph is a tree, Chen [2009] provides an algorithm which

10

can solve the TSS problem optimally in polynomial-time.

Chiang et al. [2013] consider deterministic thresholds and require every node in the net-
work to adopt. They analyze various types of graphs, for example block cactus graphs,
chordal graphs and Hamming graphs. If the threshold value does not exceed two and the
underlying graph is a chordal graph, then an optimal target set can be found in linear time.

If the underlying graph is a tree, the approximation results are the best. Knowing this fact
Ben-Zwi et al. [2011] consider the treewidth of a graph which broadly speaking measures
the degree of tree-likeness. A tree has treewidth one. They implement an algorithm for a
graph with n vertices and a treewidth ω which runs in nO(ω) time.

3.2 The Weighted Target Set Selection (WTSS) problem

Raghavan and Zhang [2015] introduce the Weighted Target Set Selection (WTSS) prob-
lem which is an extension of the TSS problem. Here, every vertex u ∈ V is additionally
endowed with a weight c(u). This captures the fact that people can initially be bought
with different values than their thresholds. As different people need a different level of
persuasion to become an initial adopter, these weights are fitted for every user.

The WTSS and Least Cost Influence Problem (LCIP) (which will be presented in Chapter
4) are very similar, but differ in the fact that in the LCIP partial payments are allowed
which are not possible in the WTSS problem. This means that in the WTSS problem
either a company pays the full costs c(u) or nothing. Furthermore, the WTSS problem
requires a 100% adoption rate and all neighbors have equal influence on a certain node.
Hence, the WTSS problem can be viewed as a special case of the LCIP. [Raghavan and
Zhang, 2015]

Raghavan and Zhang [2015] propose an algorithm to solve the WTSS problem on trees
similar to the dynamic programming algorithm which will be presented later to solve the
LCIP on trees. This algorithm, which runs in O(|V |) time, builds upon solving subprob-
lems defined by star graphs and then use a backtracking method. Furthermore, Raghavan
and Zhang [2015] extend the special case of trees to a more general setting.

Cordasco et al. [2015] also deal with the weighted version of the TSS problem. They
interpret the weights c(u) as costs which describe how much a user must receive to be
convinced in the beginning. It is reasonable that some users have lower or higher costs

11

than others. For example, prominent persons or bloggers are more likely to have high
costs, because they are very influential.
The problem is formulated by Cordasco et al. [2015] such that for a given network
G = (V,E), given thresholds θ(u) and given costs c(u) : V → N, the target set S ⊆ V is
sought for which the costs C(S) =

∑
u∈S

c(u) are minimal. The goal is that at the end the

whole network is active. The influence factors (which are defined in Section 4.1) are all
set to one which means that an active node influences a neighbor in the amount of one.

Cordasco et al. [2015] also propose an algorithm to solve the WTSS problem on trees.
The algorithm is called WTSS(G) and has similarities to the TPI(G) algorithm which
will be presented in Section 4.3.3. The starting point is the initial graph of the network
and at each discrete time step a node is removed so that a certain function (which depends
on the costs, thresholds and degrees of the nodes) is maximized. During the algorithm
it can happen that a node u has a threshold value higher than its number of neighbors.
Then, this node u is selected to be in the initial target set and the threshold values of its
neighbors are decreased by one since the neighbors receive influence from u. Addition-
ally, node u is removed from the graph. A further scenario that could occur is that the
threshold of a node v has been decreased to zero. Then v is removed from the graph and
again, its neighbors’ thresholds are reduced by one. [Cordasco et al., 2015]

AlgorithmWTSS(G) returns for any graphG a target set and runs inO(|E|log|V |) time.
Furthermore, Cordasco et al. [2015] prove that the costs of the target set is constrained by∑
u∈V

c(u)θ(u)
d(u)+1

where c(u) describes the cost of node u. Cordasco et al. [2015] show that the

WTSS(G) solves the WTSS problem optimally if the input graph is a complete graph
and whenever c(u) ≤ c(v) holds it also holds that θ(u) ≤ θ(v).

In experiments with different threshold settings, Cordasco et al. [2015] compare the
WTSS(G) algorithm with two alternative algorithms. One algorithm chooses the nodes
in decreasing order with respect to the degree of the nodes and is called DegreeInt. The
other algorithm is named DiscountInt and also selects the nodes in descending order of
degree but additionally reduces the degree of its neighbor nodes by one.
In 17 of 18 networks the WTSS(G) algorithm performs better than the others, while in
only one both other algorithms return slightly better results.

12

4. The Least Cost Influence Problem

The Least Cost Influence Problem is an influence maximization problem where the ob-
jective is to find the minimum total amount of payments required to influence a given
fraction of people in a network. It is an extension of the TSS problem and the crucial
difference to the TSS problem is that here companies are allowed to target people with
partial incentives. This means that they do not have the binary choice to either target a
person or not, but can also target them partially. Thus companies are, for example, not
only allowed to give products for free, but also to distribute discount coupons. The ad-
vantage is that instead of giving one person a product for free, the company can e.g. give
away five 20%-coupons and hence reach a larger number of people. [Gunnec et al., 2013]

Gunnec et al. [2013] are one of the first who introduced the LCIP. They wrote a technical
report in 2013 and then published an extended version of it in 2016. These two papers
will be my main sources for this chapter.
An important prerequisite of the LCIP is the Share-Of-Choice Problem that has been con-
sidered in the literature by many authors, for example by Kohli and Krishnamurti [1989],
Green and Krieger [1989] and Camm et al. [2006]. Gunnec and Raghavan [2016] in-
troduce the LCIP as an attempt to include social network effects in the Share-Of-Choice
Problem. Thereof they develop the LCIP.

Gunnec et al. [2016] define the LCIP in general and then focus on tree networks. For the
special case that all neighbors have the same influence on a certain node and a 100% adop-
tion rate is needed, they introduce two algorithms to solve the LCIP. They first describe
a dynamic programming algorithm and then show that this algorithm can be viewed as a
greedy algorithm. However, Gunnec et al. [2016] prove that the dynamic programming
algorithm has a better worst-case running time than the greedy algorithm and that it is
also applicable in the case of unequal influence. They also show that the LCIP on a tree
with unequal influence from the neighbors can be reduced to the 0-1 knapsack problem
and hence is NP-hard. Gunnec et al. [2016] provide a totally unimodular (TUM) inte-
ger linear programming (ILP) formulation for the LCIP on trees with equal influence and

13

show how this formulation can be extended to a ILP formulation for a general graph.

Cordasco et al. [2015] refer to the LCIP as an extension of the TSS problem where a com-
pany not only has the binary choice of giving someone a product for free or not, but also
has the possibility to give a percentage discount. They call the problem "targeting with
partial incentives" and use a target vector which determines how much incentive is given
to which node. The purpose of targeting with incentives is that in the future the nodes can
be easier influenced when their thresholds are reduced by these payments.
Cordasco et al. [2015] describe an algorithm to solve the LCIP for the whole network to
adopt. The algorithm starts with the initial graph and in every iteration vertices are deleted
by means of a certain parameter. From the remaining graph one can detect where the par-
tial incentives are allocated. Furthermore, they concentrate on the special cases when the
underlying graph is a complete graph or a tree, and show that in this two cases the target
vector determined by the algorithm is optimal. In the instance of a tree, it is even possible
to explicitly compute the cost of the optimal target vector, see Section 4.3.3.

A further work that has to be mentioned is ”How to influence people with partial incen-
tives” from Demaine et al. [2014]. In their work they extend the Submodular Threshold
model from Kempe et al. [2015] to a fractional version where it is allowed to pay nodes
with partial incentives. Demaine et al. [2014] show how the main results of the integral
version can be adopted to the fractional version. Moreover, they find out that the two
versions have basically the same computational complexity. However, in practice the
fractional model yields almost always to a higher expected number of adopters.

4.1 Formal definition

We consider a social network as an undirected graph G = (V,E) where the set of nodes
V = {1, 2, . . . , n} represents the people in the network and the set of edges E denotes
the connections between the people. Gunnec et al. [2016] use thresholds which constitute
the amount of utility that has to be obtained to adopt a certain product. For vertex u the
threshold is denoted by θ(u). The higher the threshold, the harder the node can be influ-
enced. As before, a node is considered to be active if it already has adopted the product
and inactive otherwise. The influence factor d(u, v) describes how much an active neigh-
bor v influences the node u. If there is no direct connection (no edge which connects them
directly), then the influence factor is equal to zero. p(u) describes the payment a node u
gets as a tailored incentive. α ∈ [0, 1] denotes the fraction of nodes that we require to
be active at the end. To formulate the problem formally, Gunnec et al. [2016] introduce

14

time periods, t = 1, 2, . . . T and define yut = 1 if node u is active in time period t, and
0 otherwise. Let N(u) be the set of neighbors of the node u. The process starts with
all nodes inactive and the partial payments (incentives) for all nodes have to be chosen
and payed. A node gets active if the sum of the total influence of the neighbors and the
tailored incentive has reached its threshold. At every time step the states of the nodes are
updated and the process stops if no more activations are possible. The objective is to pay
a minimal amount of inducements such that at the end there are at least α|V | nodes which
have adopted the product.
A mathematical formulation of the LCIP is shown in LCIP1.

LCIP1 [Gunnec et al., 2016]:

Min
∑
u∈V

p(u) (4.1)

s. t. yu0 = 0 ∀u ∈ V (4.2)

p(u) +
∑

v∈N(u)

d(u, v) · yv(t−1) ≥ θ(u) · yut ∀u ∈ V, t = 2, . . . T (4.3)

∑
u∈V

yuT ≥ α|V | (4.4)

where yut ∈ {0, 1} and p(u) ≥ 0 ∀u ∈ V, t = 1, 2, . . . T. (4.5)

The first expression ensures that the sum over all incentives payed in the network is mini-
mized. Constraint set (4.2) ensures that at the beginning all nodes are inactive. Constraint
set (4.3) makes sure that if a node is active then the sum of incentives and the total influ-
ence for one node received from its neighbors is as least as high as its threshold. Condition
(4.4) ensures that at least a given fraction α of all nodes have adopted.

4.2 Special case of tree networks

Gunnec et al. [2016] focus their work on the special case of tree networks. They show
that under the additional assumption that the influence does not depend on the identity
of the neighbor, the LCIP on tree networks is polynomially solvable. Furthermore, they
formulate the LCIP on trees in a totally unimodular way and extend this formulation
to general graphs. For the special case when the adoption rate is 100%, there are two
interesting approximation results. When the influence from all neighbors is the same, the
LCIP is polynomially solvable on trees. Whereas in the case of unequal influence the
problem remains NP-hard. [Gunnec et al., 2016]

15

4.2.1 LCIP on trees with equal influence of the neighbors and 100%
adoption

This section will focus on the special case of the LCIP on which the identity of the neigh-
bors does not play a role, which means d(u) = d(u, v), ∀v ∈ V , 100% adoption is
required, which means α = 1, and when the underlying graph is a tree. First, star sub-
networks are introduced and some properties about the problem are stated. Secondly, two
algorithms from Gunnec et al. [2013] to solve the LCIP are presented. Lastly, the theory
is demonstrated in two examples.

A star network has one root node and arbitrarily many leaf nodes. All leaf nodes are con-
nected to the root node and have degree equal to one. Therefore, the degree of the root
node equals the number of leaf nodes. [Gunnec et al., 2013]
To illustrate the concept of a star network consider Figures 4.1, 4.2 and 4.3. Note that the
root node of a tree is not unique, but every node can serve as a root node.

Figure 4.1: This is the initial network which we want to decompose in its star networks
and node 1 is the root node.

Figure 4.2: This is the first star subnetwork where root node 1 has degree 3 and the leaf
nodes 2, 3 and 4 have degrees 1.

16

Figure 4.3: In the second star subnetwork node 2 is the root node and has degree 2 and
leaf nodes 5 and 6 have degree 1.

Properties of the initial network and feasible solutions [Gunnec et al., 2013]

Property 1. In the initial network, it holds that θ(u) ≥ d(u), ∀u ∈ V .

Proof. If the inequality θ(u) < d(u) holds this means that the influence which node u
receives from one neighbor is sufficient for node u to adopt the product and the extra
influence θ(u) − d(u) is not needed. So one can set the threshold equal to the influence
factor what also means that one neighbor is sufficient.

Property 2. For all leaf nodes it holds that θ(u) = d(u).

Proof. We assume, without loss of generality, that if all vertices in the set of neighbors
N(u) of node u adopt the product, then the overall influence from the neighbors will be
at least as high as the threshold of node u and therefore affect u also to adopt. If this
is not the case, it would mean that there must be an external payment with a value of
θ(u) − |N(u)|d(u). However, this value is independent of the solution of the problem
and hence one can omit it and assume that θ(u) ≤ |N(u)|d(u), ∀u ∈ V . For a leaf
node it holds that |N(u)| = 1, so it follows θ(u) ≤ d(u) and we know from Property 1
θ(u) ≥ d(u), so it must be the case that θ(u) equals d(u).

Property 3. If in a star network the root node adopts, then all leaf nodes will adopt too.

Proof. For each leaf node u one active neighbor is enough to adopt, because θ(u) =

d(u).

Property 4. If in a star network a leaf node is given any payments, then it gets incentives
in the amount of its threshold.

Proof. Either the leaf node gets influenced from the root node and there is no need to pay
incentives (see Property 3), or the leaf node does not get influenced from the root node.
Since it is only connected to the root node, it would not get any other influence from the
network and a payment below its threshold would not activate the leaf node.

17

Property 5. The initial network can be reduced by canceling leaf nodes which have larger
or equal thresholds than the root node ρ.

Proof. From Property 1 follows θ(ρ) ≥ d(ρ). If a leaf node u has a larger or equal
threshold than the root node ρ, then it follows that θ(u) ≥ θ(ρ) ≥ d(ρ). Giving leaf
node u incentives of the amount θ(u) which is greater or equal than the influence d(ρ) is
inefficient.

Property 6. If a network only consists of two people, it is better to pay the one with the
lower threshold.

Proof. The other person would adopt automatically from the influence.

Property 7. An upper bound of incentive payments would be to pay all nodes except one.

Proof. Since all of its neighbors will be active, the omitted node would also adopt, be-
cause of the influence it received from the neighbors.

Property 8. A lower bound of incentive payment could be to pay the node with the least
threshold.

Proof. Paying the node with the lowest threshold could cause a cascade and activate all
other nodes.

For better understanding the LCIP, consider Figure 4.4. In this tree, each node u is as-
sociated with two numbers, its threshold θ(u) and the influence factor d(u) for which
d(u) = d(u, v) holds for all v ∈ V . For the leaf nodes, the threshold and the influence
factor is the same (Property 2). Now and in all following examples of this chapter, the
value above the node describes the threshold of the node and the value below is the influ-
ence factor of the node. The purpose of the LCIP is now to find a cheapest way to get all
nodes active, i.e. decide which nodes should get incentives to achieve that at the end all
adopt the product and the overall incentives are as sparse as possible. A trivial solution is
to pay node 1 its threshold θ(1) = 8 and node 2 its threshold θ(2) = 6, the other nodes
would also adopt, because the influence from these two nodes are enough. This solution
costs 14. However, maybe there are less expensive solutions. For example, paying node
3 its threshold θ(3) = 1 leads to an activation of node 3 and decrease node 1’s threshold
from 8 to θ(1)− d(1) = 8− 5 = 3. Then paying 3 monetary units to node 1 causes node
1 to adopt and reduce the threshold of node 2 from 6 to θ(2) − d(2) = 6 − 4 = 2. Fur-
thermore, node 4 adopts automatically because of Property 3. Paying partial incentives in
the amount of 2 to node 2 induces node 2 to adopt, and again all leaf nodes (i.e. nodes 5
and 6) adopt as well. This is a cheaper solution because the total costs are equal to 6. In

18

the following two algorithms it is described how to identify a cheapest solution.

Figure 4.4: A tree network

4.2.2 Dynamic Programming Algorithm

The underlying graph is still a tree, all neighbors of a node have the same influence and
the required adopting rate is still 100%. The dynamic programming algorithm proposed
by Gunnec et al. [2013] divides up into three sub problems which are optimally solved
separately. In this algorithm, the star subnetworks and their connection to the rest of the
network, the so called "connector link", plays an important role. To solve a star we as-
sume that influence travels through this connector link to the star network. Once a star is
solved, its information is compressed into a single node and this node becomes a leaf node
for the next star. When the last star is solved, a backtracking method is used to identify the
nodes which have received incentives. [Gunnec et al., 2013] Before the algorithm begins,
the tree is decomposed in star networks. The details are explained after the pseudocode
given in Algorithm 1.

SolveStar
Gunnec et al. [2013] consider a star subnetwork and the goal is to find the cheapest solu-
tion to get all nodes in the star active. Since the leaf nodes will automatically adopt if the
root node adopts, the focus is on how one can get this root node active. A trivial solution
is to pay the root node incentives in the amount of its current threshold, but maybe there is

19

Algorithm 1: Dynamic Programming Algorithm [Gunnec et al., 2013]
1. begin
2. for each star network do,
3. SolveStar (see Algorithm 2)
4. CompressStar (see Algorithm 3)
5. TotalCost (see Algorithm 4)
6. end

a more preferable solution. Assuming the root node is influenced through the "connector
link" by its influence factor d(ρ), we can update its threshold to θ(ρ) = θ(ρ)− d(ρ). The
reason for doing this becomes clear below. Furthermore, we can neglect leaf nodes which
have a larger threshold than the root node’s influence factor and threshold. One would
never pay such a leaf node because it would be cheaper to directly give incentive to the
root node. So we can omit these leaf nodes and collect all other leaf nodes with thresholds
smaller than the minimum of θ(ρ) and d(ρ) in the set S. In the next step, we arrange the
remaining leaf nodes in increasing order of their thresholds and pay them incentives in
this order to reduce the root’s threshold. Now, there are two cases of how much incentives
should be given to the leaf nodes, if the set S is larger than d θ(ρ)

d(ρ)
e. In the first case, the

first d θ(ρ)
d(ρ)
e leaf nodes in S are paid and this influence is enough to convince the root node

to adopt. Whereas in the second case, the first d θ(ρ)
d(ρ)
e − 1 leaf nodes in S are paid and the

remaining amount is paid to the root node directly. These two cases are compared and
the case with the minimum cost is chosen. Other cases cannot be optimal because the
remaining leaf nodes have higher thresholds than the chosen leaf nodes. If S is the empty
set or is lower than d θ(ρ)

d(ρ)
e, all nodes in S are paid incentives and the remaining amount,

to get the root node active, is paid to the root node directly again. [Gunnec et al., 2013]

To demonstrate the difference between the two cases, consider Figure 4.5 where Case 1 is
advantageous and Figure 4.6 in which Case 2 is demonstrated. Nodes which get payments
are colored in pink.

Figure 4.5: Case 1: d θ(ρ)
d(ρ)
e leaf nodes in S are paid

20

Case 1 (See Figure 4.5): Root node 1 has an (already updated) threshold of θ(1) = 15

and an influence factor of d(1) = 8. For the leaf nodes it holds that θ(2) = d(2) = 4 and
θ(3) = d(3) = 6. Since d θ(ρ)

d(ρ)
e = d15

8
e = 2 both leaf nodes get their thresholds payed.

First, node one gets 4 monetary units, this causes the threshold of node 1 to reduce to
θ(1)− d(1) = 15− 8 = 7. Then node 3 gets active by obtaining 6 monetary units. Since
the influence factor of node 1 is 8, and its current threshold is only 7, it also adopts. The
cost of this procedure is 4 + 6 = 10. If instead only node 2 gets its threshold payed and
root node 1 gets partial incentives in the amount of 7 monetary units, the cost would be
4 + 7 = 11. So in this case it would be better to pay both leaf nodes and do not give any
incentives to the root node.

Figure 4.6: Case 2: d θ(ρ)
d(ρ)
e − 1 leaf nodes in S are paid

Case 2 (See Figure 4.7): In this case, the values for the nodes are the same as above, but
with the only difference that the threshold of root node 1 is θ(1) = 11. The number of leaf
nodes which get incentives is now d θ(ρ)

d(ρ)
e− 1 = d11

8
e− 1 = 2− 1 = 1. Since node 2 has a

lower threshold than node 3, node 2 gets paid. Consequently, the threshold of node 1 gets
updated to 11− 8 = 3. Now the root gets partial incentives in the amount of 3 monetary
units and the effect is that the root node adopts and therefore, leaf node 3 as well. The
costs to solve this star are 4+3 = 7. However, if the incentive is not paid to the root node
directly, but instead node 3 gets its threshold paid, the cost would be 4+ 6 = 10. Thus, in
this case it is cheaper to give incentives to the root directly.

The algorithm is not shown for each star separately with different notation, but generally
for a star subnetwork. V denotes the set of nodes, L the set of leaf nodes, S∗ the set of leaf
nodes which have received incentives, ρ describes the root node of the star and C the cost
of the star. In the array P , the given partial incentives are saved. The SolveStar algorithm
is given in Algorithm 2.

21

Algorithm 2: SolveStar [Gunnec et al., 2013]
1. Update threshold for the root, θ(ρ) = θ(ρ)− d(ρ).
2. Let S = {u | θ(u) < min{θ(ρ), d(ρ)}, u ∈ L}.
3. Order nodes in S with respect to θ(u), u ∈ S in ascending order
4. If |S| ≥ d θ(ρ)

d(ρ)
e, cost of the star, C, equals to the minimum of the following;

5. Select the first d θ(ρ)
d(ρ)
e nodes in S and give incentives equal to their threshold.

6. Select the first d θ(ρ)
d(ρ)
e − 1 nodes in S and give incentives equal to their threshold.

Pay the remaining to the root, P [ρ] = θ(ρ)− (d θ(ρ)
d(ρ)
e − 1)d(ρ).

7. Else cost of the star, C, equals,
8. For all nodes in S, give incentives equal to their threshold. Pay the remaining to the

root, P [ρ] = θ(ρ)− |S|d(ρ).
9. Remove the selected nodes from the set S and place them in set S∗.

CompressStar
In the SolveStar algorithm the cost of a star is calculated while the purpose of the Com-
pressStar algorithm is to convert the star in a single node u with a new threshold θ′(u) and
a new influence factor d′(u). Since the compressed node becomes a leaf node in the next
star, the threshold and the influence factor have the same value. To calculate these new
threshold, Gunnec et al. [2013] distinguish between two cases:
1. Case: Remaining threshold at the root node.
2. Case: Threshold of a leaf node that is in S.

In the first case we have to further differentiate between two types which correspond to
the two cases in the SolveStar algorithm (pay partial incentives to the root node or not).
In the first type there is a partial payment to the root node, which means that the threshold
for the root node is covered exactly and the new threshold of the compressed node is just
the influence factor d(ρ). The second type describes the case with no partial incentives
given to the root node directly, which means that the influence comes only from the leaf
nodes, but this influence may transcend the current threshold of the root node. When de-
termining the new threshold, this excess influence has to be subtracted from the influence
factor, i.e., θ′(ρ) = θ(ρ) + d(ρ)− |S∗|d(ρ). [Gunnec et al., 2013]
In the second case, the threshold of the new compressed node is simply the threshold
of a leaf node in set S: Remember that at the end of the SolveStar algorithm the set S
describes the nodes which have not obtained any incentives. Since there is not always a
node remaining in the set S, this case is not always possible. However, sometimes this
could be a cheaper way, because the threshold of a node in S is always lower than the
root’s influence factor. [Gunnec et al., 2013] All cases will be illustrated in the following
using small examples that are based on the instances given in Figures 4.7, 4.8 and 4.9.

22

Figure 4.7: Case 1, Type 1

Case 1, Type 1 (See Figure 4.7): The nodes 1, 2 and 3 describe a star subnetwork that
is connected to node 4 (and a probably existing remaining graph) by a "connector link".
Since the connector link is assumed to be realized, in the first step the threshold of node
1 is updated from θ(1) = 22 to θ(1) = 22 − 5 = 17. In the next step the leaf node 2

gets paid the amount of its threshold, which has the effect that the threshold of the root
node decreases by d(1) = 5 to 17 − 5 = 12. Then, leaf node 3 gets incentives in the
amount of 3 which reduces the threshold of node 1 again by 5. Now node 1 has a thresh-
old of 12 − 5 = 7. Since all leaf nodes (2 and 3) have adopted, the root node will also
adopt. Hence, we only need the realized assumed connector link influence in the amount
of d(1) = 5, so the new threshold and influence factor of the compressed node equals 5.

Figure 4.8: Case 1, Type 2

Case 1, Type 2 (See Figure 4.8): In this case the setting is the same as above, but now
the threshold of the root node is 14 which is updated in the first step to 14 − 5 = 9, due
to the connector link. Here we have no partial payments to the root node, because the
influence from the leaf nodes is enough to get the root active since 2 · d(1) = 10 > 9.
Leaf node 2 gets payments in the amount of 2 which reduces the threshold of the root
node to 9 − 5 = 4. Then, leaf node 3 obtains incentives in the amount of 3 which again
reduces the threshold of node 1 by 5 which causes the root node to adopt. We obtain the
new threshold by applying the formula θ′ = θ(ρ) + d(ρ)− |S∗|d(ρ) = 9 + 5− 2 · 5 = 4.

Case 2 (See Figure 4.9): We have the same setting as before, but with a different threshold
and influence factor for the root. The threshold of the root node is 13 and the influence

23

Figure 4.9: Case 2

factor is 7 which is first updated to θ(1) = 13 − 7 = 6 due to the connector link. After
that, node 2 gets paid its threshold and hence gets active. Furthermore, it causes node 1

also to adopt, because the influence factor of node 1 is 7 and its current threshold is 6, so
receiving influence from one node is sufficient. Now, the important point is that paying
leaf node 3 its threshold θ(3) = 3 is advantageous. So, the cost is 2 + 3 = 5. Otherwise
the cost would be calculated as in case 1 type 2: θ(ρ)+d(ρ)−|S∗|d(ρ) = 6+7−1 ·7 = 6.
Hence, it is cheaper to set the threshold of the compressed node equal to 3.

Let B[u] = v be a pointer which means that the node u is represented by node v after the
star in which node u occurs is already compressed. The initial condition B[u] = u says
that in the beginning every node points at itself. The pseudocode for the CompressStar
algorithm is shown in Algorithm 3.

Algorithm 3: CompressStar [Gunnec et al., 2013]

1. New threshold θ′ = min{d(ρ), θ(ρ) + d(ρ)− |S∗|d(ρ), min
u∈S

d(u)}.
2. If θ′ = min

u∈S
d(u) and u′ = arg min

u∈S
d(u), then B[ρ] = B[u′].

3. New influence factor d′ = θ′.

TotalCost
With the CompressStar algorithm, stars are compressed into a single node until there is
only one star left. The last star is also solved with this method, but now the threshold of
the root node has not to be updated in the beginning, because there is no external influence
anymore. The total cost of the LCIP is the sum of all costs for each star subnetwork. An
important step is to trace back the distribution of the costs to identify the nodes which
have received incentives. The set S describes the union of all sets which contain the
nodes which are given incentives (S∗). Leaf nodes which are selected in the algorithm
are paid in the amount of their threshold. Furthermore, if a node u is in the set S and it
holds that B[u] = v which means that u is represented by v then leaf node v gets paid
its threshold. A node v which is not a leaf node in the initial network must be a root for
some star network and hence gets paid its new compressed threshold θ′(v) if there is a

24

node u in the set S which points at node v. All nodes which get partial incentives can
be determined by the vector P and are represented in the set P and get payments in the
amount of P [B[u]]. [Gunnec et al., 2013]
The TotalCost algorithm is now given in Algorithm 4.

Algorithm 4: TotalCost [Gunnec et al., 2013]
1. Cost equals C =

∑
all stars

C.

2. Let S =
⋃

all stars

S∗.

3. If u ∈ S and B[u] ∈ L, then pay θ(B[u]) to node B[u].
4. Else Pay θ′(B[u]) to node B[u].
5. Let P = {u |P [u] > 0} with P [u] as in Algorithm 2
6. If u ∈ P , Pay P [u] to node u.

Gunnec et al. [2016] revise their dynamic programming algorithm. The SolveStar and
CompressStar algorithms are combined into one algorithm which is called StarHandling.
A backtracking method to identify which vertices get how much incentives is used as
well. Furthermore, they prove that the algorithm solves the problem optimally in O(|V |)
time.

Example 4.1. We consider the initial given graph in Figure 4.10. The progress of the

algorithm is illustrated with Figure 4.11 and 4.12. First, the star with leaf nodes 1, 2, 3

and 4 is compressed into node 5 , then the star with leaf nodes 11 and 12 is compressed

into node 10, and then the last star is solved. The thresholds and influence factors are

given in Table 4.1.

Figure 4.10: Initial given graph

25

Figure 4.11: Star compressed into node 5

Figure 4.12: Star compressed into node 10

The numeration of the steps which are performed in the particular algorithm corresponds

to the number of this particular step in the pseudocode of the algorithm. At the beginning

it holds that B[u] = u and P [u] = 0 ,∀u ∈ V . We start with the SolveStar algorithm for

the star with leaf nodes 1, 2, 3 and 4 and root node 5.

SolveStar:

V = {1, 2, 3, 4, 5}, L = {1, 2, 3, 4}, ρ = 5

1. θ(5) = 29− 10 = 19

2. S = {1, 2, 3, 4}
3. S = {4, 2, 3, 1} (note that the notation is not chosen well, but in the interest of the

example this problem is disregarded)

4. |S| = 4 > d19
10
e = 2

5. θ(4) + θ(2) = 6 vs.

6. θ(4) + (θ(5)− (2− 1)d(5)) = 2 + (19− 1 · 10) = 2 + 9 = 11

min{6, 11} = 6, then C = 6

9. S = {3, 1}, S∗ = {4, 2}

26

node 1 2 3 4 5 6 7 8 9 10 11 12
threshold 9 4 7 2 29 40 12 11 15 21 1 5

influence factor 9 4 7 2 10 13 12 11 15 6 1 5

Table 4.1: Threshold and influence factors for the nodes

CompressStar:

1. θ′ = min{d(5), θ(5)+d(5)−|S·|d(5), d(3), d(1)} = min{10, 19+10−2·10, 7, 9} = 7

2. B[5] = B[3] = 3

3. d′ = θ′ = θ′(5) = d′(5) = 7

SolveStar:

V = {10, 11, 12}, L = {11, 12}, ρ = 10

1. θ(10) = 21− 6 = 15

2. S = {11, 12}
3. S = {11, 12}
7. |S| = 2 < d15

6
e = 3

8. P [10] = θ(10)− |S|d(10)
C = θ(11)+θ(12)+P [10] = θ(11)+θ(12)+θ(10)−|S|d(10) = 1+5+15−2 ·6 = 9

9. S = ∅, S∗ = {11, 12}

CompressStar:

1. θ′ = min{d(10), θ(10)+d(10)−|S∗|d(10)} = min{6, 15+6−2·6} = min{6, 9} = 6

3. d′ = θ′ = d′(10) = θ′(10) = 6

SolveStar: (last star)

V = {5, 6, 7, 8, 9, 10}, L = {5, 7, 8, 9, 10}, ρ = 6

1. θ(6) = 40

2. S = {5, 7, 8, 10}
3. S = {10, 5, 8, 7}
4. |S| = 4 ≥ d40

13
e = 4

5. θ(10) + θ(5) + θ(8) + θ(7) = 6 + 7 + 11 + 12 = 36 vs.

6. (P [6] = θ(6)− (4− 1) · d(6))
θ(10) + θ(5) + θ(8) + P [6] = θ(10) + θ(5) + θ(8) + θ(6)− (4− 1) · d(6) =
6 + 7 + 11 + 40− 3 · 13 = 25

min{36, 25} = 25, then C = 25

9. S = {7}, S∗ = {10, 5, 8}

27

TotalCost:

1. C =
∑

all stars

C = 6 + 9 + 25 = 40

2. S =
⋃

all stars

S∗ = {4, 2, 11, 12, 10, 8, B[5] = 3}

3. Pay leaf nodes 4, 2, 11, 12, 8, 3 full incentives in the amount of 2, 4, 1, 5, 11, 7

4. Pay node 10 (not leaf node) in the amount of θ′(10) = 6

5. P = {10, 6}
6. Pay nodes 10 and 6 partial incentives in the amount of P [10] = 3 and P [6] = 1.

4.2.3 Greedy Algorithm

In every step of the greedy algorithm described by Gunnec et al. [2016] the node with the
smallest minimum of threshold and influence factor receives payments in the amount of
its threshold. If several nodes have the same minimum of influence factor or threshold,
one is selected arbitrarily. Then, the thresholds of the neighbor nodes are updated which
means that they are lowered by the amount of their influence factors. This could cause a
neighbor node to get active as well and induce a chain reaction. Afterwards, the active
nodes are eliminated and the graph consists again only of inactive nodes, and the process
is repeated until all nodes are active. Example 4.2 illustrate the greedy algorithm.

Example 4.2. In this example we consider the same situation as in Example 4.1, namely

Figure 4.10 and Table 4.1. The numbers at the left stand for the iteration steps of the

greedy algorithm.

1. min
u∈V
{θ(u), d(u)} = d(11) = 1

Set of buyers = {11}
update threshold θ(10) = 21− 6 = 15

2. min
u∈V \{11}

{θ(u), d(u)} = d(4) = 2

Set of buyers = {11, 4}
update threshold θ(5) = 29− 10 = 19

3. min{θ(u), d(u)}
u∈V \{11,4}

= d(2) = 4

Set of buyers = {11, 4, 2}
update threshold θ(5) = 19− 10 = 9

4. min{θ(u), d(u)}
u∈V \{11,4,2}

= d(12) = 5

Set of buyers = {11, 4, 2, 12}
update threshold θ(10) = 15− 6 = 9

5. min{θ(u), d(u)}
u∈V \{11,4,2,12}

= d(10) = 6, but its threshold is 9, so node 10 gets a payment in the

amount of 9.

Set of buyers = {11, 4, 2, 12, 10}

28

update threshold θ(6) = 40− 13 = 27

6. min{θ(u), d(u)}
u∈V \{11,4,2,12,10}

= d(3) = 7

Set of buyers = {11, 4, 2, 12, 10, 3}
update threshold θ(5) = 0

Set of buyers = {11, 4, 2, 12, 10, 3, 5}
update threshold θ(1) = 0

Set of buyers = {11, 4, 2, 12, 10, 3, 5, 1}
update threshold θ(6) = 27− 13 = 14

7. min{θ(u), d(u)}
u∈V \{11,4,2,12,10,3,5,1}

= d(8) = 11

Set of buyers = {11, 4, 2, 12, 10, 3, 5, 1, 8}
update threshold θ(6) = 14− 13 = 1

8. min{θ(u), d(u)}
u∈V \{11,4,2,12,10,3,5,1,8}

= θ(6) = 1

Set of buyers = {11, 4, 2, 12, 10, 3, 5, 1, 8, 6}
update threshold θ(7) = 0 and threshold θ(9) = 0

Set of buyers = {11, 4, 2, 12, 10, 3, 5, 1, 8, 6, 7, 9} = V

Costs = 1 + 2 + 4 + 5 + 9 + 7 + 11 + 1 = 40

Gunnec et al. [2016] prove that the greedy algorithm solves the LCIP on a tree optimally
in O(|V |log|V |) time. Hence, the dynamic programming algorithm has a better worst-
case running time than the greedy algorithm.

4.2.4 Totally unimodular (TUM) formulation of the LCIP on trees

The formulation of the LCIP defined in Section 4.1 is based on time periods. Gunnec
et al. [2016] propose a further formulation of the LCIP where they consider a propagation
network with directed influence which is shown in LCIP2.

LCIP2 [Gunnec et al., 2016]:

Min
∑
u∈V

p(u) (4.6)

s. t. yuv + yvu = 1 ∀{u, v} ∈ E (4.7)

p(u) +
∑

v∈N(u)

d(u) · yvu ≥ θ(u) ∀u ∈ V (4.8)

p(u) ≥ 0 ∀u ∈ V (4.9)

yvu ∈ {0, 1} ∀v ∈ V, u ∈ N(v). (4.10)

29

The objective is the same as in LCIP1 and ensures that the partial incentives paid to the
nodes are minimized. The binary variable yuv describes whether u influences v (yuv = 1)
or not (yuv = 0). Constraint set (4.7) makes sure that if there is an edge which connects
node u and v, either u influences v or u is influenced by v. In constraint set (4.8) it is cap-
tured that for every node in the graph the sum of the influence received from neighbors
and partial payments exceeds or is equal to the node’s threshold.

In the case that constraint set (4.8) is satisfied at equality, one can write θ(u)−
∑

v∈N(u)

d(u)yvu

instead of p(u) and so p(u) would vanish and the remaining constraint set (4.7) is TUM
[Gunnec et al., 2016]. However, this equality does not always hold, so Gunnec et al.
[2016] distinguish between three types of influence.
Type H receives influence d(u).
Type L has incoming influence of l(u) = θ(u)− (g(u)− 1)d(u).
Type Z has no incoming influence.

Let g(u) = d θ(u)
d(u)
e be the number of active neighbors needed to get node u active. Now,

there is a case differentiation between g(u) ≥ 2 and g(u) = 1. Note that g(u) < 1 is
impossible since θ(u) ≥ d(u),∀u ∈ V . For Case 1 (g(u) ≥ 2) consider Figure 4.13.

Figure 4.13: Case 1

30

The threshold value of u equals θ(u) = 9, the influence factor is d(u) = 4, hence
g(u) = d θ(u)

d(u)
e = d9

4
e = 3, and l(u) = b(u) − (g(u) − 1)d(u) = 9 − (3 − 1) · 4 = 1. If

node u receives no partial payments, e.g. p(u) = 0, then it gets g(u) − 1 = 2 times the
influence of type H and once the influence of type L. In the case when u gets payments
in the amount of one monetary unit, e.g. p(u) = 1, then getting two times d(u) as an
incoming influence from type H is enough to convince node u to adopt. The next relevant
scenario is p(u) = 5, in which u gets only additional influence from one arc with type H .
The last case is when node u receives payments in the amount of 9 monetary units and
no influence from any nodes. Generally, there are g(u) + 1 possible opportunities of par-
tial payments, e.g., payments in the amount of 0 and obtaining influence of type H from
g(u) − 1 edges and of type L from one arc, or payments in the amount of l(u) + λd(u)

with λ = 0, . . . g(u)− 1 and influence of type H of g(u)− 1− λ arcs.

Figure 4.14: Case 2

The second case (g(u) = 1) is shown in Figure 4.14. Since the threshold value and the
influence factor are both equal to 9, g(u) equals 1. Furthermore, l(u) = θ(u) − (g(u) −
1)d(u) = θ(u) = d(u). Now, there are g(u) + 1 = 2 possibilities. The first one is that
p(u) = 0 and node u gets incoming influence of type L from one edge. The second
scenario is p(u) = l(u) and node u receives no incoming influence. In our example this
corresponds to the two possibilities with p(u) = 0 and p(u) = 9.
Summarizing, if a node gets no partial payments, it receives incoming influence of typeH
from g(u)− 1 edges and influence of type L from one arc. If a node gets payments, then
there is only incoming influence of type H , but none of type L. Moreover, there are not
more than g(u)− 1 influencing arcs. With these findings, Gunnec et al. [2016] provide a
further formulation for the LCIP. The key observation is that the variable yvu from model
LCIP2 is now decomposed into three binary variables xHvu, xLvu and xZvu which correspond
to the influence types high, low and zero. For example, xHvu = 1 means that node u gets
influence of type H from node v. The coefficient ck(u) with k ∈ {H,L,Z} describes the
amount of incoming influence for node u for the corresponding types, e.g. cH(u) = d(u),
cL(u) = l(u) and cZ(u) = 0.

31

LCIP3 [Gunnec et al., 2016]:

max
∑
u∈V

∑
v∈N(u)

∑
k∈{H,L,Z}

ck(u) · xkvu (4.11)

s. t.
∑

k∈{H,L,Z}

(xkuv + xkvu) = 1 ∀{u, v} ∈ E (4.12)

∑
v∈N(u)

xHvu ≤ g(u)− 1 ∀u ∈ V (4.13)

∑
v∈N(u)

xLvu ≤ 1 ∀u ∈ V (4.14)

xkvu ∈ {0, 1} ∀u ∈ V, v ∈ N(u), k ∈ {H,L, Z}
(4.15)

Remember that we want to minimize the sum of the partial payments. The payment for a
particular node can be written as the difference between its threshold and its total incom-
ing influence. This means one can write

∑
u∈V

p(u) =
∑
u∈V

(θ(u) −
∑

v∈N(u)

∑
k∈{H,L,Z}

ck(u) ·

xkvu), because the payment for a node can be replaced by the value of its threshold mi-
nus the sum of incoming influence from all active neighbors. Since

∑
u∈V

θ(u) is constant,

we can, instead of minimizing
∑
u∈V

p(u), maximize
∑
u∈V

∑
v∈N(u)

∑
k∈{H,L,Z}

ck(u) · xkvu, which

means that we maximize the overall incoming influence in the network. Exactly this ob-
jective function is described in LCIP3 in (4.11). Constraint set (4.12) makes sure that if
there is a connection between two nodes either node u influences node v with exactly one
type of influence or vice versa. (4.13) says that the number of influencing neighbors of
type H is at most g(u) − 1, and (4.14) bounds the number of influencing neighbors of
type L by 1.

Gunnec et al. [2016] show that the constraint matrix of LCIP3 is totally unimodular.

4.3 LCIP on more general settings

4.3.1 Approximability

Gunnec et al. [2016] show that in general the LCIP is NP-hard. When the LCIP re-
quires a 100%-adoption rate (e.g. α = 1) then the problem gets APX-hard and cannot
be approximated within a factor of O(2log1−ε|V |) for any fixed constant ε > 0, unless
NP ⊆ DPTIME(|V |polylog(|V |)). [Gunnec et al., 2016]

32

4.3.2 Extension of the TUM-approach

In Section 4.2.4 the TUM formulation of the LCIP for trees has been introduced. Gunnec
et al. [2016] extend this approach to purpose a LCIP formulation for general graphs. To
this end, it is important to note that the influence diffusion process must be described by a
directed acyclic graph. Thus, further constraints are added to the new model LCIP4 which
is also applicable to general graphs.

LCIP4 [Gunnec et al., 2016]:

max
∑
u∈V

∑
v∈N(u)

∑
k∈{H,L,Z}

ck(u) · xkvu (4.16)

s.t. (4.13), (4.14), (4.15) (4.17)∑
k∈{H,L,Z}

xkvu = yvu ∀u ∈ V, v ∈ N(u) (4.18)

∑
{u,v}∈C

yuv ≤ |C| − 1 ∀dicycle C inG (4.19)

yuv + yvu = 1 ∀{u, v} ∈ E (4.20)

yuv ∈ {0, 1} ∀u ∈ V, v ∈ N(u) (4.21)

The binary variable yuv is the same as in LCIP2 and is defined to be 1 if u sends "influ-
ence" of type H, L or Z to node v and 0 otherwise. G denotes the directed graph formed by
y and is a directed acyclic graph (DAG). The objective function is the same as in LCIP3
(4.11) and constraint sets (4.13), (4.14) and (4.15) are also inherited. Constraint set (4.18)
links the two variables x and y. Constraint set (4.19) makes sure that the influence dif-
fusion network is formed by a directed acyclic graph, and is called dicycle inequalities.
In constraint set (4.20) it is ensured that if u and v have a connection either u sends "in-
fluence" of type H, L or Z to v or vice versa. Gunnec et al. [2016] use a branch-and-cut
approach to solve the LCIP on general graphs and apply the shortest path procedure from
Grötschel et al. [1985] for the separation of inequalities (4.19).

Gunnec et al. [2016] conduct some computational experiments to evaluate the perfor-
mance of their branch-and-cut approach. It turns out that the solutions which are found
with their approach and have an acceptable running time, are nearly optimal for large net-
works.

33

4.3.3 LCIP on general graphs

Cordasco et al. [2015] define the LCIP in a different way and refer to it as targeting with
partial incentives. They introduce a targeting vector s = (s(u1), s(u2), ..., s(un)) with
s(u) ∈ N0, which indicates how much incentives are given for each node. For a given
network G = (V,E) and given thresholds θ(u) : V → N the task is to find a target vector
s such that the costs C(s) =

∑
u∈V

s(u) are minimized. Different than Gunnec et al. [2016],

they do not use influence factors, but assume that every vertex receives influence from an
active neighbor in the amount of one. Additionally, Cordasco et al. [2015] assume that
the threshold of node u is between one and the degree of node u.

To solve the LCIP with a 100% adoption rate, Cordasco et al. [2015] propose an algorithm
which is called TPI(G) for an input graph G. The algorithm starts with the initial graph
G and at every discrete time step a node is removed from the graph such that a certain
parameter is maximized. These vertices which are removed by this method do not receive
partial payments. In the course of the algorithm it could be the case that a node has a
higher threshold than its number of neighbors. Without partial payments it could never
get active. Since a 100% adoption rate is compulsory, we need this node to adopt as well.
Hence, we give it incentives so that the threshold is reduced to a value which is at most as
high as the number of remaining neighbors.

The algorithm TPI(G) returns for any graph G a target vector s for G. Furthermore,
Cordasco et al. [2015] prove that the costs of this target vector C(s) =

∑
u∈V

s(u) are con-

strained by
∑
u∈V

θ(u)(θ(u)+1)
2(deg(u)+1)

where deg(u) is the degree of node u in the initial graph.

For a complete graph or a tree, the algorithm TPI(G) outputs actually an optimal target
vector s. Additionally, for a tree, the costs of the optimal target vector can be explicitly
stated, e.g., C(s) = n− 1+

∑
u∈V

(θ(u)− d(u)) where n is the number of nodes of the tree.

[Cordasco et al., 2015]

For the TPI(G) algorithm Cordasco et al. [2015] conduct the same experiments as for
the WTSS(G) algorithm, but compare it with two other algorithms. One is called De-
greeFrac and chooses nodes fractionally proportional to its degree. In detail, the algo-
rithm pays on node u an payment of s(u) = bdeg(u)·B

2·|E| c, where B describes the budget.
The second algorithm is called DiscountFrac and selects the node with maximal degree
and endows it with the minimum amount which can achieve to activate this node. After
paying out this node, the degree of the neighbor nodes are reduced by 1. Cordasco et al.
[2015] show that the TPI(G) algorithm outperforms these two algorithms.

34

5. The Least Cost Influence problem in
multiple social networks

5.1 Introduction

Up to now, we have only considered influence maximization problems on isolated single
social networks. However, many people are not only member of one social network, but
join several of them. This has the effect that people could be influenced through more
sources and can spread information on more platforms at the same time. Additionally, an
individual can carry information from one network to another. For example, if someone
reads on Facebook some information about a product and shares it on Facebook and ad-
ditionally on Twitter, the information has entered a new social network.
Furthermore, it has to be taken into account that the difficulty of influencing people can
vary in different social networks. These observations lead to a new problem which has to
be defined and modeled. [Zhang et al., 2016b]

In this chapter the LCIP on multiple social networks will be formally defined. The key
idea to solve the problem on multiple networks is to couple these social networks into
one network and then use already existing methods to solve the LCIP on a single net-
work. Therefore, so-called coupling schemes are essential. Lossless and lossy coupling
schemes will be presented and illustrated with examples. At the end of the chapter the
experimental work of Zhang et al. [2016b] will be summarized.

Shen et al. [2012] also consider the LCIP problem in multiple social networks. They
take into account that targeting interest-matching users, which have similar interests, is
advantageous. Moreover, the fact that there are not only positive but also negative rela-
tionships is considered. Shen et al. [2012] couple multiple networks into one network by
combining nodes which occur in more networks into one supernode. With this approach
the characteristics of the individual networks are lost.

35

5.2 Definition of the problem

Zhang et al. [2016b] are one of the first who define the LCIP on multiple social networks
and model it in the following way.
Let k be the number of the social networks which are treated in this problem. Then every
network i ∈ {1, ..., k} is represented through a weighted directed graphGi which is deter-
mined through its set of vertices V i = {ui1, ..., uin} and the set of arcs Ei, where every arc
is endued with a weight wi(v, u) which determines how much a node v influences node
u in the ith network. The threshold value for node u in the network Gi is denoted with
θi(u). N i−

u = {v ∈ V i : (v, u) ∈ E} and N i+
u = {v ∈ V i : (u, v) ∈ E} represent the

sets of incoming resp. outgoing neighbors of node u in the ith network. G1...k denotes the
system of all k networks and the union U =

⋃k
i=1 V

i describes the set of all nodes which
are part in any of those k networks. It could also be the case that a node joins in more
than one network. Zhang et al. [2016b] call these nodes overlapping users.

Remember that in the Linear Threshold model a node gets active if the total influence
from its active neighbors is as least as high as its threshold. Hence, condition (5.1) is
necessary to get node u active, if it is not chosen to be in the target set.∑

v∈N(u), v is active

w(v, u) ≥ θ(u) (5.1)

In the case of multiple networks, a node gets active if its threshold is reached in at least
one of the networks. This means that the influence for the nodes are considered in every
network separately. If a node gets enough influence to get active in one network, then this
has the effect that it gets active in all networks and thus transport the information from
one network to another. Condition (5.2) has to be fulfilled for at least one network i to get
node u active. [Zhang et al., 2016b]∑

v∈N i−
u , v is active

wi(v, u) ≥ θi(u) (5.2)

The general principle of the activation process is the same as in the case of a single net-
work. We start with an initial active set, at every time step the state of the nodes is updated
and the process stops if no more activations are possible. Zhang et al. [2016b] constrain
the number of time steps of the diffusion to d and call this the number of propagation
hops. Ad(G1...k, S) denotes the set of active nodes after d time steps, where S is the initial
active set.

36

With this prerequisites, we can formally define the LCIP on multiple social networks.

Definition (Zhang et al. [2016b]): LetG1...k be a system of k networks where U describes
the set of all users. Let d be a positive integer and 0 < α ≤ 1. Then the LCIP asks for the
smallest set S ⊂ U which guarantees that at least an α fraction of users is active after d
time steps, i.e.,

|Ad(G1...k, S)| ≥ α|U | (5.3)

5.3 Coupling schemes

Since there are already several investigations and approaches for the influence maximiza-
tion problem in a single network, it is advantageous to find a method to convert multiple
social networks into one social network. Zhang et al. [2016b] use the technique of cou-
pling schemes. Once the multiple networks are transformed into a single social network,
the existing theory for single social networks is applicable. Coupling schemes are sup-
posed to maintain relevant information about the networks and replicate the propagation
process from all particular networks.

A coupling scheme which projects multiple social networks to a single coupled network
G = (V,E) has to fulfill the following three important characteristics. [Zhang et al.,
2016b]
1. There is a set of nodes U ⊆ V and a bijection F which maps people to vertices in the
coupled network, e.g. F : U → U . With this requirement one can identify the users in
the coupled network. 1

2. There is a time mapping function T : N→ N. This condition helps to identify when a
node is activated.
3. User u ∈ U gets active at time t on G1...k if and only if F(u) gets active at time T (t)
in G. This condition ensures that the diffusion process is the same for the set of users U
than for the set of nodes U , which means that the spread of information is retained.

These are very strong conditions and may be hard to fulfill. Therefore, the last constraint
can be relaxed to that a user u ∈ U gets active at time t on G1...k if F(u) gets active at
time T (t) on G. This means that the activation of u ∈ U is necessary, but not sufficient
to activate F(u).
In the case when the third condition is relaxed then we talk about a lossy coupling scheme,
because some information about the diffusion process gets lost. However, if the last

1Typo in the original paper

37

condition is satisfied the scheme is called lossless coupling scheme. [Zhang et al., 2016b]
In the next sections these two coupling schemes are discussed in detail.

5.4 Lossless coupling schemes

In this section, the clique and the star coupling scheme introduced by Zhang et al. [2016b]
are discussed. After that, it is shown how these schemes can be used as so-called reduced
coupling schemes.
The coupling schemes are based on the Linear Threshold model (see Section 2.1.1), but
they are also applicable to other diffusion models such as the Cascade model.

5.4.1 Clique coupling scheme

We consider networks G1, ..., Gk which we want to couple into one network G. First,
Zhang et al. [2016b] implement dummy nodes for several people for networks which they
do not join. Therefore, every user is now member of all considered networks. In the
following section these dummy nodes will be omitted, because they are redundant. Fur-
thermore, every user u has a representative vertex in network Gi which is denoted with
ui. If there is an arc between u and v in Gi then ui and vi are connected. Now, com-
bining all users of all networks leads to one big network G. Edges between same users
but in different networks, e.g. (ui, uj), are provided with a weight w(ui, uj) = θ(uj). Of
course, nodes which represent the same user in different networks influence each other,
because if a node ui gets active in network i then all nodes which represent the same user
in other networks get active as well. However, the problem here is that the activation of
these other nodes is time lagged since these other nodes are activated one step after the
first representative ui is activated. So a node uj can influence other potential buyers one
step later than ui can spread information although they are representing the same person.
To prevent this problem, Zhang et al. [2016b] implement the so called gateway vertices
for all users. The gateway vertex for user u is denoted with u0 and has the property that
all representatives of u can only influence other people through this gateway vertex u0.
Therefore, all edges (ui, vi) are replaced by edges (u0, vi). Furthermore, edges between
all representatives of user u and its gateway vertex, u0, u1, ...uk, are introduced. Since
there are connections between all nodes, we say they form a clique. And this clique can
only influence through the gateway vertex and now has the advantage that the spread of
information reaches all neighbors of any representative of user u at the same time. So the
time delay has vanished. [Zhang et al., 2016b]
The extra edges between all representatives are introduced, because then the influence can
travel directly from one representative to another. Otherwise the representatives would

38

get active one time step later through the gateway vertex. However, at the same time step
their neighbors can already receive the influence also from the gateway vertex. So the
extra edges are added for technical reasons.
Lastly, the thresholds and edge weights are modeled in the following way: Gateway ver-
tices are endowed with a threshold value of 1. For a node ui the threshold is equal to the
threshold of u in network Gi, e.g., θ(ui) = θi(u).
Edges from representatives to the gateway vertex are endowed with 1. If there is a con-
nection between user ui and vi in network Gi, then the edge (u0, vi) possesses weight
w(u0, vi) = wi(u, v). Within a clique the edge weights are chosen in a way that they all
get active if one of them is activated, e.g., w(ui, uj) = θ(uj). It is easy to obtain, that by
influencing in the amount of the threshold, one active neighbor within a clique is sufficient
to activate the whole clique. [Zhang et al., 2016b]

To better understand the concept of the clique coupling scheme consider Example 5.1
where a very small social network is shown.

Example 5.1. In Figure 5.1 three social networks are shown. Representatives of the same

users are dyed in the same color. The nodes and their thresholds in the different networks

are given, and the influence factors are specified as well.

Figure 5.1: Facebook, Instagram and Twitter

In Figure 5.2 the gateway vertices are already added and the new connections between

gateway and representative nodes as well as the relationships within the cliques are in-

dicated. If the green node receives influence in the amount of 0.27 from the brown node

in Facebook, then this has the effect that the brown gateway vertex influences the green

node in Facebook with a weight of 0.27. The influence and edge weights among the rep-

resentatives of the green user and the green gateway vertex are illustrated in Figure 5.3.

39

Figure 5.2: Representation with gateway vertices

Zhang et al. [2016b] state that the solution of the LCIP in multiple social networks equals
to the solution in the coupled network. The only difference is that if the propagation
process in the original multiple networks makes d hops, in the coupled network we need
2d hops, since there is an extra hop through the gateway vertices.
Further interesting observations concern the number of vertices and edges in the coupled
network. Since every user u has k + 1 associated nodes, e.g. u0, ..., uk (dummy variables
included), we have all together (k+1)|U | = (k+1)n vertices, where n is the total number
of nodes in the coupled network. The number of arcs equals |E| =

∑k
i=1|Ei|+nk(k+1)

which is composed of the number of edges which are already in the initial networks plus
the edges which are added within a clique. [Zhang et al., 2016b]

5.4.2 Star coupling scheme

Since the number of additional edges, resulting from the clique coupling scheme, is very
high and increases hugely with the number of users, Zhang et al. [2016b] alternatively
present the star coupling scheme. In the star coupling scheme there is another extra node
for each user added namely the intermediate vertex which has its place between the gate-

40

Figure 5.3: Influence among one clique

way vertex and all other vertices of what is previously called clique. Now, the term clique
does not apply anymore. The advantage is that now not all representatives of one node are
connected with each other but they are linked through the intermediate vertex. Further-
more, the intermediate vertex has a connection to the gateway vertex. The other nodes of
the previously clique have no connection to the gateway vertex anymore.
The reason why such an intermediate node is introduced is to reduce the number of edges.
We still need the gateway vertex to make sure that the influence to other users can spread
only when all representatives of the activated node are active.
The intermediate vertex of user u is denoted with uk+1 and has a threshold θ(uk+1) = 1.
The weights of the extra edges are modeled in the following way. The edges between
intermediate and gateway vertex have weight 1, e.g., w(uk+1, u0) = w(u0, uk+1) = 1.
The edges from the intermediate vertex to the other nodes have a weight in the amount of
the threshold of the particular node, e.g., w(uk+1, ui) = θ(ui). Whereas edges from rep-
resentative nodes to the intermediate vertex have weight 1, e.g., w(ui, uk+1) = 1. [Zhang
et al., 2016b] The idea of the star coupling scheme is illustrated in Example 5.2.

Example 5.2. In this example we consider the same three social networks, thresholds and

influence factors as in Example 5.1.

Figure 5.1 and Figure 5.2 are also adopted for this example, but the influence among

representatives of the same user is now modeled in a different way which is shown in

Figure 5.4.

With the star coupling scheme the number of vertices is now |V | = (k + 2)|U | = (k +

2)n, because for every user we have 2 additional nodes, namely the gateway and the

41

Figure 5.4: Influence in form of a star

intermediate vertex. However, the number of arcs is reduced to |E| =
∑k

i=1|Ei|+2n(k+

1) since there are no connections between all representatives but only via the intermediate
vertex.
Moreover, the propagation process with d hops in the original multiple social network
corresponds to the propagation process with 3d hops in the coupled network. [Zhang
et al., 2016b]

5.4.3 Reduced coupling schemes

Since there are added dummy nodes for all networks that a certain user does not join, we
have a large number of nodes. These extra vertices are added to ensure that the number
of influenced nodes in the coupled network is scaled up from the number of influenced
vertices in the original networks. Consider three social networks with 0.5n, 0.7n and 0.4n

users which leads in total to 1.6n nodes. In the clique coupling scheme we would have
(k + 1)n = 4n vertices and in the star coupling scheme (k + 2)n = 5n vertices. [Zhang
et al., 2016b]
They introduce weights for the nodes in the coupled network and make sure that "the
total weight of active vertices is scaled from the number of active users in the original
network system" [Zhang et al., 2016b]. A representative vertex is only generated for the p
networks which a user joins. Furthermore, all representative vertices are associated with
a weight 1 and each user vertex has weight k − p. Thus, the number of extra nodes is
reduced to n in the clique coupling scheme and to 2n in the star coupling scheme. [Zhang
et al., 2016b]

42

5.5 Lossy coupling shemes

In the previous section, coupling schemes which preserve all information about the net-
works, but produce a very large coupled network, are introduced. In this section, a method
where some information may get lost but the size of the coupled network is kept relatively
small, is discussed. Of course, we want to keep the loss of information as small as pos-
sible and find a solution for the LCIP in the coupled network which is very similar to the
solution of the problem in multiple networks.
In this section, a coupling scheme based on the Linear Threshold model is considered.
However, the theory of a lossy coupling scheme can be adapted for other diffusion mod-
els as well.
Zhang et al. [2016b] construct a lossy coupling scheme in the following way: First, they
modify the condition to get a user u active from condition (5.4)∑

v∈N i−
u , v is active

wi(v, u) ≥ θi(u) (5.4)

to condition (5.5) where α1(u), ..., αk(u) are positive parameters.

k∑
i=1

(αi(u)
∑

v∈N i−
u , v is active

wi(v, u)) ≥
k∑
i=1

αi(u)θi(u) (5.5)

Since we relax the condition, it could of course be the case that condition (5.4) is fulfilled
but condition (5.5) not.
Next, Zhang et al. [2016b] show a method how to choose the parameters α1(u), ..., αk(u).
Since users are easier to influence in some networks than in other networks, Zhang et al.
[2016b] define the easiness of a user u in network i as the ratio between the total influence

from friends and its threshold in network i, e.g., εi(u) =

∑
v∈Ni−u

wi(v,u)

θi(u)
.

Now, this easiness values are used as parameters. Zhang et al. [2016b] construct a coupled
network G with V = {u1, ..., un} and the thresholds of the vertices are given as θ(u) =
k∑
i=1

αi(u)θi(u). The weight of an edge is given as w(v, u) =
k∑
i=1

αi(u)wi(v, u), with

wi(v, u) = 0 if there is no connection between node v and u in network i.
If a user u gets active in network G during the propagation process which starts from the
same target set S in G and G1...k than this means that u also gets active in the network
G1...k. This implies that if an α fraction of users get active through a target set S in G
than at least an α fraction gets active in G1...k with the same target set S. In the other
direction this is not always true, because the activation condition is modified. Therefore,

43

the coupling scheme is called lossy, because we can not adopt all characteristics of the
networks. In Example 5.3 such a matter is described.
[Zhang et al., 2016b]

Example 5.3. We again consider the three networks from Figure 5.1 and now we want to

couple them into one network using the easiness parameters.

First, the easiness parameters for each user and network is calculated and the threshold

value as well. The user colored in pink is denoted with up, the lilac user with ul, the brown

one with ub and the green user with ug.

Pinkuser

Facebook: αi(up) = εi(up) =

∑
v∈Ni−up

wi(v,up)

θi(up)
= 0

0.4
= 0

Instagram: αi(up) = εi(up) =
0.1
0.5

= 0.2

Threshold: θ(up) =
k∑
i=1

αi(up)θ
i(up) = 0 + 0.2 · 0.5 = 0.1

Lilac user

Facebook: αi(ul) = εi(ul) =
0.2
0.1

= 2

Instagram: αi(ul) = εi(ul) =
0.5
0.6

Twitter: αi(ul) = εi(ul) =
0.3
0.9

Threshold: θ(ul) = 2 · 0.1 + 0.5
0.6
· 0.6 + 0.3

0.9
· 0.9 = 1

Brownuser

Facebook: αi(ub) = εi(ul) =
0.3+0.5

0.4
= 0.8

0.4
= 2

Twitter: αi(ub) = εi(ub) =
0.1
0.2

= 0.5

Threshold: θ(ub) = 2 · 0.4 + 0.1
0.2
· 0.2 = 0.9

Greenuser

Facebook: αi(ug) = εi(ug) =
0.2
0.3

Instagram: αi(ug) = εi(ug) =
0.2
0.3

Twitter: αi(ug) = εi(ug) =
0.3
0.4

Threshold: θ(ug) = 0.2
0.3
· 0.3 + 0.2

0.3
· 0.3 + 0.3

0.4
· 0.4 = 0.7

Next, the edge weights are determined.

w(ug, up) =
k∑
i=1

αi(up)w
i(ug, up) = 0.2 · 0.1 = 0.02

w(up, ul) = 2 · 0.2 + 0.5
0.6
· 0.5 = 0.817

w(ul, ub) = 2 · 0.3 + 0.1
0.2
· 0.1 = 0.65

w(ug, ul) =
0.5
0.6
· 0.2 + 0.3

0.9
· 0.3 = 0.267

w(ub, ug) =
0.2
0.3
· 0.2 + 0.3

0.4
· 0.3 = 0.358

w(up, ub) = 2 · 0.5 = 1

44

The resulting coupled network is graphically illustrated in Figure 5.5.

Figure 5.5: The coupled network via easiness parameters

To verify that this coupling scheme produces actually a lossy solution consider the case

when d = 1 and α = 0.75 which means that in one step 3 of 4 users have to be influenced.

In Figure 5.5 we see that this is not possible if |S| = 1 using the lossy coupling scheme.

Giving the pink user incentives at the beginning leads to an activation of the brown user

but no more users can also be influenced. Moreover, the green and lilac user cannot

influence any other members. Whereas in the original system of networks giving the pink

user incentives leads to an activation of the lilac and brown user. (Because in Facebook

the threshold of the lilac user is lower than the influence from the pink node (0.1<0.2)

and for the brown user as well (0.4<0.5).) Thus, we get only a feasible solution when not

using the lossy coupling scheme.

5.6 Evaluation of the coupling schemes

In this section, the results of the experimental work of Zhang et al. [2016b] are summa-
rized.

First, Zhang et al. [2016b] propose an improved greedy algorithm and compare the so-
lution of the algorithm to the optimal solution which is computed through a 0-1 integer
linear programming problem. They generate small size networks since the IP is not appli-
cable on large networks. The seed size describes the number of initial chosen nodes. The
analysis of the data shows that the seed size, found with the heuristic, of the various cou-

45

pling schemes are close to the optimal seed size. Furthermore, one can observe that the
seed size gets nearer to the optimal size when the number of propagation hops is increased.

Next, Zhang et al. [2016b] compare the lossy and the lossless coupling schemes. They
use two different kinds of data sets. On the one side real networks data and on the other
hand synthesized networks which were created through a random network model. The
number of hops is set to d = 4 and the influenced fraction to α = 0, 8.

The evaluation of the solution quality shows that the seed size of the solution based on
lossy coupling schemes is larger than of the lossless. However, a loss of information oc-
curs only at overlapping users which are relatively sparse. Therefore, the effect on the
solution quality is also not very high. Analyzing the running time yields to the conclusion
that the algorithm is slower when using lossless than lossy coupling schemes. The reason
for that is the large number of vertices (many of them are redundant) and edges in the
lossless scheme. The impact on the running time is relatively high when the networks are
large. All in all, one can conclude that lossless schemes should be applied when the focus
lies on the quality of the solution and in rather small networks. Whereas, lossy coupling
schemes are better when the running time is limited and the overlapping fraction is small.

Another issue which is considered by Zhang et al. [2016b] is the structure of the seed set
and the influenced set. Not surprisingly, the overlapping users are chosen very frequently
in the seed set although they are only a small fraction of the whole users. This is because
the overlapping users can influence in more than one social network and therefore, prob-
ably can reach a larger spread of people. One can also observe that the amount of the
overlapping users in the solution increases only slightly when the influenced fraction α is
increased, because all good overlapping users are already taken.
Furthermore, Zhang et al. [2016b] observe that the nodes of large networks are chosen
more often than nodes from small networks in the seed set and therefore, can also be
found more frequently in the influenced set.
Moreover, they find out that it could be the case that influencing is easier in a particular
network than in other networks. This occurs when users of one network are rarely chosen
in the seed set, but appear often in the influenced set.

Lastly, the impact of additional networks is studied. Therefore, Zhang et al. [2016b] gen-
erate synthesized networks. One can observe that with increasing the number of networks
the seed size decreases rapidly. Thus, the additional network speeds up the spread of the
information a lot. This observation can be made with all coupling schemes.

46

6. Least Cost Rumor Blocking

6.1 Introduction

Since social networks serve more and more as an information platform, negative informa-
tions can spread through social networks as well. Not only the truth can spread rapidly
through social networks but also rumors can diffuse very fast and can lead to serious con-
sequences. For example, in 2009 the misinformation that the swine flu broke out appeared
on Twitter [Nguyen et al., 2012]. Through the diffusion of the correct statement that the
swine flu did not break out, the rumor could have been stopped.
Hence, the limitation of the diffusion of rumors is an interesting and important research
topic. In the last years, a couple of authors (Fan et al. [2013], Budak et al. [2011], Pham
et al. [2016], He et al. [2012], Zhang et al. [2016a]) have considered this problem and
they use various approaches.
Fan et al. [2013] consider the situation when two types of information spread over the
network at the same time. One type is some rumor and the second type describes the truth
and can be interpreted as the protector group which wants to limit the diffusion of the
rumor.
A similar approach is presented by Budak et al. [2011]. They model the fact that some
rumor occurs in the network and is detected after some time and at this point a limiting
campaign is started.
A different approach is considered by Pham et al. [2016]. They consider unwanted users
to whom the information should not come up. Since unwanted users have an opposite
opinion and can use the information for their benefits, the purpose is to prolong the ac-
tivation of such users as long as possible. A company, for example, wants to hide its
marketing strategy from competitive firms.
He et al. [2012] consider the scenario when a company want to block the influence from
a competitor by selecting an initial target set which spreads its own information as effec-
tively as possible. They refer to the problem as influence blocking maximization problem
and use a competitive Linear Threshold model. Competitive Threshold models are also
considered by Borodin et al. [2010].

47

He et al. [2012] prove that the objective function of the influence blocking maximization
problem under the competitive Linear Threshold model is submodular and introduce a
greedy algorithm. Moreover, they develop a second algorithm with a better running time
which has an analogous blocking effect.
Zhang et al. [2016a] consider the detection of misinformation in social networks. Dif-
ferent than the other authors they utilize time constraints. They refer to the problem as
Time Constrained Misinformation Detecting and find out that the problem is NP-hard.
Furthermore, they show a network compression based algorithm to solve the problem.

This chapter is structured in the following way: First, diffusion models are presented.
Then, the LCRB problem is defined formally. Complexity results and possible solution
approaches are summarized. Lastly, results of the experimental work of Fan et al. [2013],
Budak et al. [2011] and Pham et al. [2016] are summarized.

6.2 Models

Fan et al. [2013] introduce two Cascade models which describe the spread of two simul-
taneously starting cascades. The first cascade characterizes the rumors and is denoted by
R and the second cascade P stands for the protectors. We say a node is infected when it is
influenced by rumors, protected when it is influenced by protectors or inactive otherwise.
The rumor originators are denoted by AR and the initial protected nodes are described by
AP . Furthermore, the spread of information is progressive as in the Cascade models in
Section 2.2 which means that once a node is infected/protected it can not change its status
anymore. If a node is influenced from both cascades at the same time, then cascade P has
precedence since it is assumed that people mostly believe the truth.
The models described by Fan et al. [2013] are called Opportunistic One-Activate-One
(OPOAO) Model and Deterministic One-Activate-Many (DOAM) Model. They will be
explained in detail in the next section.

Budak et al. [2011] describe also two Cascade models which are very similar to those of
Fan et al. [2013]. The models are also progressive and the good information is preferred
over the bad one. There are three possible states: inactive, influenced by cascade C (cam-
paign) or influenced by cascade L (limiting campaign). Budak et al. [2011] call their mod-
els Multi-Campaign Independent Cascade model (MCICM) and Campaign-Oblivious In-
dependent Cascade model (COICM). The crucial difference to the models from Fan et al.
[2013] is that the cascades do not start simultaneously, but cascade C starts first and after
some time the other cascade L begins to spread.

48

6.2.1 OPOAO Model

The diffusion process starts with an initial set of protectorsAP and an initial set of rumors
AR. At every time step the infected and protected nodes have a single chance to success-
fully influence an inactive neighbor. Each neighbor of a particular node u is chosen with
the same probability, e.g. 1

degout(u)
where degout(u) describes the out-degree of node u. In

the next time step again all protected and infected vertices can choose an inactive node to
activate. The process runs in discrete time and ends if no more activations are possible or
no more inactive nodes are available. This model captures the situation when everybody
can only speak to one person at the same time. Hence, the diffusion of information is
relatively slow.
[Fan et al., 2013]

6.2.2 DOAM Model

In this model we again start with initial seed sets of protectors and rumors. The important
difference to the previous model is that now every neighbor of an infected/protected node
is influenced and adopts its status in the next time step. Hence, a person can reach more
people at the same time and the diffusion of the information is much faster. Again, the
process stops if no more activations are possible. [Fan et al., 2013]

6.2.3 MCICM

The initial active sets of cascade C (campaign) and L (limiting campaign) are denoted
with AC resp. AL. Cascade C is spotted with a time delay r and at that time cascade
L begins to spread. At every time step a newly activated node u of cascade C and L
has once the chance to influence an inactive neighbor v with a success probability pC,u,v
resp. pL,u,v. If both cascades reach a certain node at the same time step then cascade L
has priority since "good" information is preferred. Again the process stops if no more
activations are possible. [Budak et al., 2011]

6.2.4 COICM

This model is equal to the MCICM with the only difference that the success probability
is independent of the campaign, e.g., pu,v = pC,u,v = pL,u,v. One can interpret this as the
circumstance where the quality of the information is the same for both campaigns, but the
first one which arrives at the node is more likely to convince it. So the activation does not
depend on which campaign tries to influence, unless both cascades try to activate at the
same time then cascade L is favored. This model is applicable when two companies offer

49

similar products or ideas and none of them can be interpreted as a good or bad company.
[Budak et al., 2011]

6.3 Problem definition

Before defining the LCRB problem in a formal way, an important observation of the
network structure has to be mentioned. The nodes in the network often divide up into
groups with a high density of connections within the group and sparse external connec-
tions. Since the people with many common interests form a group, it is reasonable to
assume that they mostly communicate within the group about these topics. Fan et al.
[2013] call such a group "community" and denote the set of disjoint communities with
C = {C1, C2, ..., Ck}. The community where the rumor has its origin is called rumor
community. The vertices which are connected with the rumor community are called R-
neighbors and there is a special focus to protect these nodes, because protecting them can
prevent that the rumor is transmitted to all other members of the network. Since there are
only a few connections crossing communities, it is advantageous to protect these so-called
bridge ends.

Fan et al. [2013] define the LCRB Problem as the task to find, for a given network with
given communities, rumor originators and bridge ends, the minimum set of protector orig-
inators so that at the end there is at least an α ∈ [0, 1] fraction of bridge ends protected.
They describe two variants of the problem. The first one is called Least Cost Rumor
Blocking under opportunistic model (LCRB-P) and only an α fraction is required to be
protected and the diffusion process is described by the OPOAO model. The second ver-
sion is called Least Cost Rumor Blocking under deterministic model (LCRB-D) and cov-
ers the diffusion under the DOAM model. In this case α = 1 is required because the
information spreads out rapidly. [Fan et al., 2013]

However, Budak et al. [2011] define a slightly different problem that does not build upon
community structure. The task of the problem is to minimize the number of nodes influ-
enced by campaign C. Formally, Budak et al. [2011] refer to the problem as the eventual
influence limitation (EIL) problem and the MCICM is used as propagation model. The
diffusion of information for campaign C starts from the so-called adversary node na and is
spotted with a time lag r. At the point where the spread of the information is detected, the
other cascade L starts. For a given budget k the EIL problem asks for the initial active set
of cascade L, AL, which minimizes the expected number of vertices which are influenced
by campaign C at the end of both processes. Budak et al. [2011] show the validity of their

50

results and approximations when the campaign C starts not only from one adversary node
but from an initial set.
The diffusion process is defined by Budak et al. [2011] to have the high-effectiveness
property as the case of |AC | = 1, which means that the spread of information has one sin-
gle originator, and the limiting campaign L has a strong influence power where everyone
who is connected with a L-influenced node is also convinced, e.g., pL,u,v = 1 if there is a
connection between u and v, and pL,u,v = 0 otherwise.

Pham et al. [2016] investigate a problem called Maximizing Influence while unwanted
target users limited (IML) which has the Linear Threshold model from Section 2.1.1 as
diffusion model. The purpose is to find an initial active set which maximizes the influence
in the network such that the influence of unwanted users is under a certain threshold after
a given number of propagation hops. Formally, the d-IML problem is specified as follows:

Definition (Pham et al. [2016]): Given a social network represented by a directed graph
G = (V,E,w) and a Linear Threshold model. Let T = {t1, t2, ..., tp} be the set of
unwanted users and d the number of propagation hops. Let δd(S) be the total number
of users that have been influenced by the set of S after d hops. The goal of the d-IML
problem is to choose the set of seed users S ⊆ V which has at most size k that maximizes
δd(S) such that the total influence unwanted users receive is bounded by a parameter of
leakage τi, i.e.:

∑
ui∈Na(ti)

ti < τi, where Na(ti) describes the active neighbors of node
ti. 1

6.4 Complexity results and approach of possible solutions

The solution approaches of the LCRB-P and LCRB-D problems divide up into two steps.
The first one is to figure out the bridge ends which is done with the Breadth First Search
(BFS)-method. The second stage is to determine the protectors. [Fan et al., 2013]
For the LCRB-P problem Fan et al. [2013] introduce a greedy algorithm with an approxi-
mation ratio of 1− 1

e
for selecting the initial protectors. The algorithm chooses the vertex

which has the highest marginal gain in protecting the bridge ends. Furthermore, they
show that the expected influence function of protectors is submodular because of the di-
minishing return condition, similar as in Section 2.2.3.
For the LCRB-D problem Fan et al. [2013] propose an algorithm with a O(ln n)-approxi-
mation ratio where n is the number of bridge end nodes.

1Slightly simplified the definition by Pham et al. [2016]

51

Budak et al. [2011] prove some interesting properties about the EIL problem. First, the
EIL problem is NP-hard even when the diffusion process has the high-effectiveness prop-
erty. Secondly, under the MCICM the EIL problem is not submodular in general, but
with the high-effectiveness property it is. Lastly, the EIL problem under the COICM is
submodular in general.
For the case when the EIL problem is submodular, Budak et al. [2011] propose an algo-
rithm which solves the problem with an approximation ratio of 1 − 1

e
. However, in large

social networks this method is too expensive and thus Budak et al. [2011] develop three
heuristics. The first one is called degree centrality. Nodes which have a high degree cen-
trality, which means that they have many neighbors and thus can influence a lot of people,
are chosen as seed nodes for the limiting campaign. The second heuristic is based on early
infectees. Here, the initial nodes which are expected to be already influenced at time r are
chosen. The last heuristic is called largest infectees. In this method, the nodes which are
expected to influence the most people are chosen in the initial active set of cascade L.

For the d-IML problem Pham et al. [2016] prove that the influence function δd(.) is sub-
modular for the Linear Threshold model. Moreover, they show that the d-IML problem is
NP-hard and can not be approximated in polynomial time within a ratio of 1− 1

e
.

Furthermore, Pham et al. [2016] introduce a heuristic algorithm which is based on a
heuristic function using not only the marginal gain of a user but also the fitness. Addition-
ally, they formulate the d-IML problem as 0− 1 Integer Linear Programming problem.

6.5 Evaluations

In this section the experiments of Fan et al. [2013], Budak et al. [2011] and Pham et al.
[2016] are summarized.

Fan et al. [2013] execute experiments on two real-world networks. They compare the al-
gorithms introduced for the OPOAO as well as for the DOAM model with two heuristics,
namely MaxDegree and Proximity. In the MaxDegree algorithm the vertices are selected
as protectors with respect to the node degree in descending order. Whereas in the Prox-
imity algorithm the nodes which are direct neighbors of rumors are selected as protectors.

For the OPOAO model the number of infected nodes of each algorithm is compared. The
research from Fan et al. [2013] leads to the result that the greedy algorithm performs bet-
ter than the two heuristics when the propagation hops are around 9 or higher. Whereas in
the case of less propagation hops the latter two heuristics are slightly better.

52

Under the DOAM model the number of selected protectors as well as the number of in-
fluenced nodes are considered. In both categories the greedy algorithm proposed by Fan
et al. [2013] performs better than the two heuristics except when the number of rumor
originators is very small. Especially when the network is large and has a high density, the
greedy algorithm is performing very well.

Budak et al. [2011] base their experiments on four regional networks from Facebook.
The performance of the greedy algorithm as well as the behavior of the three heuristics
are studied.
Under the MCICM with the high-effectiveness property and a time delay about 20%
which means that the ratio of the delay of cascade L to the duration of cascade C is
0.2 all four methods exert well. When the time delay is raised to 50%, which means that
the campaign L is started later than before, one can observe that the performance of all
methods is quickly reduced. Increasing the delay to 70% has the effect that all methods
have a very bad performance.
Under the COICM the largest infectees and degree centrality heuristics perform similar
to the greedy method whereas the early infectees heuristic runs poorer. Since here no
high-effectiveness property is assumed, the results are accordingly inferior to the findings
considered under the other model.
When the MCICM is considered without the high-effectiveness property, then the greedy
algorithm is too costly and therefore, the heuristics are taken into account. Again, the
largest infectees and degree centrality heuristics perform similar and the early infectees
worse. [Budak et al., 2011]

Pham et al. [2016] analyze three real world data sets. They compare the number of ac-
tivated users when varying the size of the seed set and the number of propagation hops,
respectively. One can observe that the heuristic algorithm performs best for all three data
sets.
Furthermore, with increasing the number of initial active users resp. the number of prop-
agation hops the quality difference between the heuristic algorithm and other methods
increases as well. [Pham et al., 2016]

53

54

7. Conclusion

We have seen that Threshold models and Cascade models are often used to model diffu-
sion processes in social networks. The TSS problem exists in many variants and authors
describe it in various settings.

One extension of the TSS problem is considered in detail in Chapter 4, namely the LCIP
which has the advantage of partial payments. For the special case of trees and a 100%
adoption rate and equal influence of neighbors, two algorithms are introduced which solve
the problem optimally. A TUM formulation of the problem on trees helps to formulate
the problem in general.
For the case that the whole network is required to adopt, an algorithm is described which
solves the LCIP on general graphs. For complete graphs and trees it solves the problem
actually optimally.
A possible research direction could be to consider the case if not a 100% adoption rate is
needed or the time is limited. [Gunnec et al., 2016]

A further extension is to consider the problem not only on one isolated network, but for
multiple networks. Since people often join more than one social network this diversi-
fication is reasonable. Coupling schemes are introduced which bundle multiple social
networks into one network. On the one hand, there are lossless coupling schemes which
preserve all informations about the networks, but produce a rather big network. On the
other hand, lossy coupling schemes are introduced which retain not exactly all properties
of the networks, but have the advantage that the coupled network is quite small. Overall,
the coupling schemes provide solutions near to the optimal solution.
Zhang et al. [2016b] want to concentrate in their further work on the problem when not
every network uses the same diffusion model.

Since not only positive information can spread through social networks, but rumors as
well, the LCRB problem is introduced. The purpose is to limit the diffusion of the rumor
and to spread the truth. As underlying model the Cascade model is used.

55

It turns out that the LCRB-P is NP-hard but can be approximated with a ratio of 1− 1
e
. For

the LCRB-D there is an algorithm with an approximation ratio of O(ln n). Furthermore,
the EIL problem is NP-hard. However, if it is submodular then it can be approximated
with a ratio of 1− 1

e
.

Fan et al. [2013] suggest to consider the LCRB problem under diffusion models without
the submodularity property.

Since the research area is relatively new there is much space for various research direc-
tions. New variants of models or problems could be considered or the existing algorithms
and heuristics could be improved.

56

Bibliography

E. Ackerman, O. Ben-Zwi, and G. Wolfovitz. Combinatorial model and bounds for target
set selection. Theoretical Computer Science, 411(44-46):4017–4022, 2010.

O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman. Treewidth governs the com-
plexity of target set selection. Discrete Optimization, 8(1):87–96, 2011.

B. Bollobas. Graph theory: an introductory course, volume 63. Springer Science &
Business Media, 2012.

A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive influence in so-
cial networks. In Internet and Network Economics, volume 6484 of Lecture Notes in

Computer Science, pages 539–550. Springer, 2010.

C. Budak, D. Agrawal, and A. El Abbadi. Limiting the spread of misinformation in social
networks. In Proceedings of the 20th International Conference on World Wide Web,
pages 665–674. ACM, 2011.

J. D. Camm, J. J. Cochran, D. J. Curry, and S. Kannan. Conjoint optimization: An exact
branch-and-bound algorithm for the share-of-choice problem. Management Science,
52(3):435–447, 2006.

N. Chen. On the approximability of influence in social networks. SIAM Journal on

Discrete Mathematics, 23(3):1400–1415, 2009.

C.-Y. Chiang, L.-H. Huang, B.-J. Li, J. Wu, and H.-G. Yeh. Some results on the target set
selection problem. Journal of Combinatorial Optimization, 25(4):702–715, 2013.

M. Chronowski. Modeling the influence in social networks: A survey on the target set
selection problem. Master’s thesis, University of Vienna, 2014.

M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming. Springer, 2014.

G. Cordasco, L. Gargano, A. A. Rescigno, and U. Vaccaro. Optimizing spread of influence
in social networks via partial incentives. In International Colloquium on Structural

Information and Communication Complexity, pages 119–134. Springer, 2015.

57

E. D. Demaine, M. Hajiaghayi, H. Mahini, D. L. Malec, S. Raghavan, A. Sawant, and
M. Zadimoghadam. How to influence people with partial incentives. In Proceedings of

the 23rd International Conference on World Wide Web, pages 937–948. ACM, 2014.

P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings

of the seventh ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 57–66. ACM, 2001.

P. A. Dreyer and F. S. Roberts. Irreversible k-threshold processes: Graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Applied Mathemat-

ics, 157(7):1615–1627, 2009.

R. Durrett. Lecture notes on particle systems and percolation. Brooks/Cole Pub Co, 1988.

D. Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning about a highly

connected world. Cambridge University Press, 2010.

L. Fan, Z. Lu, W. Wu, B. Thuraisingham, H. Ma, and Y. Bi. Least cost rumor block-
ing in social networks. In 2013 IEEE 33rd International Conference on Distributed

Computing Systems (ICDCS), pages 540–549. IEEE, 2013.

R. S. Garfinkel and G. L. Nemhauser. Integer programming, volume 4. Wiley New York,
1972.

J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at
the underlying process of word-of-mouth. Marketing letters, 12(3):211–223, 2001a.

J. Goldenberg, B. Libai, and E. Muller. Using complex systems analysis to advance
marketing theory development: Modeling heterogeneity effects on new product growth
through stochastic cellular automata. Academy of Marketing Science Review, 2001:1,
2001b.

M. Granovetter. Threshold models of collective behavior. American journal of sociology,
83(6):1420–1443, 1978.

P. E. Green and A. M. Krieger. Recent contributions to optimal product positioning and
buyer segmentation. European Journal of Operational Research, 41(2):127–141, 1989.

M. Grötschel, M. Jünger, and G. Reinelt. On the acyclic subgraph polytope. Mathematical

Programming, 33(1):28–42, 1985.

D. Gunnec and S. Raghavan. Integrating social network effects in the share-of-choice
problem. Decision Sciences, 2016.

58

D. Gunnec, S. Raghavan, and R. Zhang. The least cost influence problem. Technical
report, University of Maryland, College Park, 2013.

D. Gunnec, S. Raghavan, and R. Zhang. Tailored incentives and least cost influence
maximization on social networks. Technical report, University of Maryland, College
Park, 2016.

X. He, G. Song, W. Chen, and Q. Jiang. Influence blocking maximization in social net-
works under the competitive linear threshold model. In Proceedings of the 2012 SIAM

International Conference on Data Mining, pages 463–474. SIAM, 2012.

M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,
G. Rinaldi, and L. A. Wolsey. 50 years of integer programming 1958-2008: From the

early years to the state-of-the-art. Springer Science & Business Media, 2009.

D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a
social network. In Proceedings of the ninth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 137–146. ACM, 2003.

D. Kempe, J. Kleinberg, and É. Tardos. Influential nodes in a diffusion model for social
networks. In International Colloquium on Automata, Languages, and Programming,
pages 1127–1138. Springer, 2005.

D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a
social network. Theory of Computing, 11(4):105–147, 2015.

R. Kohli and R. Krishnamurti. Optimal product design using conjoint analysis: Compu-
tational complexity and algorithms. European Journal of Operational Research, 40(2):
186–195, 1989.

T. M. Liggett. Interacting particle systems. Springer-Verlag, New York, 1985.

M. W. Macy. Chains of cooperation: Threshold effects in collective action. American

Sociological Review, pages 730–747, 1991.

E. Mossel and S. Roch. Submodularity of influence in social networks: From local to
global. SIAM Journal on Computing, 39(6):2176–2188, 2010.

N. P. Nguyen, G. Yan, M. T. Thai, and S. Eidenbenz. Containment of misinformation
spread in online social networks. In Proceedings of the 4th Annual ACM Web Science

Conference, pages 213–222. ACM, 2012.

59

A. Nichterlein, R. Niedermeier, J. Uhlmann, and M. Weller. On tractable cases of target
set selection. Social Network Analysis and Mining, 3(2):233–256, 2013.

D. Peleg. Local majorities, coalitions and monopolies in graphs: a review. Theoretical

Computer Science, 282(2):231–257, 2002.

C. V. Pham, M. T. Thai, D. Ha, D. Q. Ngo, and H. X. Hoang. Time-critical viral marketing
strategy with the competition on online social networks. In International Conference

on Computational Social Networks, pages 111–122. Springer, 2016.

S. Raghavan and R. Zhang. Weighted target set selection on social networks. Technical
report, University of Maryland, 2015.

M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing.
In Proceedings of the eighth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 61–70. ACM, 2002.

T. Schelling. Micromotives and Macrobehavior. New York, Norton, 1978.

Y. Shen, T. N. Dinh, H. Zhang, and M. T. Thai. Interest-matching information propagation
in multiple online social networks. In Proceedings of the 21st ACM International Con-

ference on Information and Knowledge Management, pages 1824–1828. ACM, 2012.

R. J. Trudeau. Introduction to graph theory. Courier Corporation, 2013.

T. W. Valente. Network models of the diffusion of innovations. Cresskill New Jersey
Hampton Press, 1995.

D. B. West. Introduction to graph theory, volume 2. Prentice Hall Upper Saddle River,
2001.

H. P. Young. The diffusion of innovations in social networks. The economy as an evolving

complex system III: Current perspectives and future directions, 267, 2006.

H. Zhang, A. Kuhnle, H. Zhang, and M. T. Thai. Detecting misinformation in online
social networks before it is too late. In 2016 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining (ASONAM), pages 541–548. IEEE,
2016a.

H. Zhang, D. T. Nguyen, H. Zhang, and M. T. Thai. Least cost influence maximization
across multiple social networks. IEEE/ACM Transactions on Networking (TON), 24
(2):929–939, 2016b.

60

	Eidesstattliche Erklärung
	Abstract
	Zusammenfassung
	Acknowledgement
	Contents
	List of Figures
	List of Algorithms
	Abbreviations
	Introduction
	Motivation
	Structure of the thesis
	Preliminaries

	Basic models for the diffusion of information
	The Threshold model
	The Linear Threshold model
	The General Threshold model
	The Submodular Threshold model

	The Cascade model
	The Independent Cascade model
	The General Cascade model
	The Decreasing Cascade model

	The Target Set Selection problem and its weighted version
	The Target Set Selection problem
	Definition
	Approximability

	The Weighted Target Set Selection (WTSS) problem

	The Least Cost Influence Problem
	Formal definition
	Special case of tree networks
	LCIP on trees with equal influence of the neighbors and 100% adoption
	Dynamic Programming Algorithm
	Greedy Algorithm
	Totally unimodular (TUM) formulation of the LCIP on trees

	LCIP on more general settings
	Approximability
	Extension of the TUM-approach
	LCIP on general graphs

	The Least Cost Influence problem in multiple social networks
	Introduction
	Definition of the problem
	Coupling schemes
	Lossless coupling schemes
	Clique coupling scheme
	Star coupling scheme
	Reduced coupling schemes

	Lossy coupling shemes
	Evaluation of the coupling schemes

	Least Cost Rumor Blocking
	Introduction
	Models
	OPOAO Model
	DOAM Model
	MCICM
	COICM

	Problem definition
	Complexity results and approach of possible solutions
	Evaluations

	Conclusion
	Bibliography

