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Abstract. Low and infrequent demand in rural areas poses a problem
for public transport providers to run cost-effective services and individual
car use is usually the main means of transportation. We investigate how
microtransit services can be integrated with existing public transport
solutions (bus, train) as a flexible shared mobility alternative in rural
areas and how to make them attractive alternatives to individual car
use. We combine large neighborhood search with agent-based modeling
and simulation to validate generated schedules for a microtransit service
in terms of vulnerability to tardiness in passenger behavior or service
provision. This includes the study of how disturbances, such as delays
in service provision or late arrivals of passengers affect the stability of
a transport schedule concerning a reliable timely delivery to transfer
stops. We explore how simulation can be utilized as a means to fine-tune
provider policies, e.g., how long vehicles may wait for late passengers
before they depart.
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1 Introduction

Demand for transport in rural areas arises from the need to reach urban centers
for work, schools, and the utilization of various services. Due to low population
density, this demand usually peaks at particular times of a day. As a result,
public transport provisions are concentrated around these times and otherwise
operate with low frequency, and with transport services covering few select loca-
tions only. Individual car use is the main (and, often, only) means of transport
available when ad-hoc demand arises. In particular, there is a lack of transport
provisions for the first / last mile to / from public transport system corridors,
where timetabled services are available at high frequency. There is a need to
integrate microtransit services with existing (timetabled, high-volume) public
transport systems to increase adoption of shared mobility solution in areas with
low population density [6]. Improving access to and use of public transporta-
tion by refining the quality of the first / last mile connections is in the focus of
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many transport authorities around the globe [9]. New demand-responsive forms
of transport gain popularity, in particular in urban centers, where ride-hailing
services are now widely used. Microtransit systems are a demand-responsive
ride-sharing option that are flexible in their service provision and are deployed
in regions where public transport is not (or scarcely) available.

We investigate sustainable and reliable forms of rural passenger mobility.
Shared transport modes are regarded as one of the measures to reduce carbon
emissions in daily commuter traffic [4,7,10]. We are, therefore, interested in how
to provide shared transportation in rural areas that can compete with private
car use in terms of availability and convenience. This poses a challenge as using
a car is typically the fastest and most convenient mode of transportation in rural
areas.

In the modeling of transport scenarios, two complementary perspectives, cap-
turing the passenger’s and the service provider’s view, respectively, can be dis-
tinguished, a) the usage behavior of customers using a transport system, which
is captured in the form of basic transport requests or more complex activities
(transport request chains). The main concern of a customer is to be transported
without delay and in a reliable fashion; b) the service provision, where trans-
port services may vary in terms of modality, purpose, flexibility (on-demand,
timetabled), etc. The concern of a service provider is to optimize transport pro-
vision so that demand can be met. For demand-responsive services, customers
may choose to request transport well ahead of the actual journey start time (pre-
booked), or make ad-hoc requests that may occur close to the actual required
travel time.

In our study, we investigate how microtransit systems can be integrated with
existing public transport operations to meet transport demand. Certain behav-
iors in a population, such as passengers being late at agreed pickup locations,
may lead to delays that make such a transport service unreliable. A balance has
to be found in terms of providing a convenient service (all transport requests,
including delayed departures for late passengers, are serviced) and a reliable
service provision (reaching destinations in time). Whereas passenger behavior is
beyond the control of a service provider, a provider can make particular deci-
sions about its own service provision, such as allowing a certain waiting policy at
stops that may influence the number of successfully serviced transport requests.
This waiting policy may have to be calibrated to balance convenience with reli-
able service provision. We use agent-oriented simulation as a means to calibrate
demand-responsive services in terms of convenience and reliability. Microtransit
solutions follow a trip-sharing model, where multiple passengers are transported
together on-demand to particular destinations. These systems are either flexi-
ble in terms of pickup and delivery locations (door-to-door) or operate within a
network of possible, albeit fixed, locations (stops), where passengers can board
and leave vehicles. We assume in our investigation a rural area with low pop-
ulation density, where a microtransit solution is introduced as a shuttle service
to transfer people from their homes to a public transport system (train). In our
rural transport scenario, therefore, people will conduct journeys with multiple
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legs and transfers in their commute, and where on-demand service elements are
combined with timetabled public transport systems. Important aspects of ser-
vice provision are customer satisfaction – a service provider has the capacity to
provide a service when ad-hoc demand arises, and trust – customers can reach
a destination in time (avoid being late for transfer to other modes of trans-
port, or being late to work or school). We consider two performance indicators
for microtransit systems to capture these two customer-specific notions, a) the
percentage of transport requests made for a particular time horizon that can
actually be serviced (capacity-related issue), and b) how many of these serviced
transport requests are fulfilled in time (the passengers arrive at their destina-
tion at the specified time). Additional considerations are whether a customer
with delayed pickup can still be delivered to their destination in time, or how
much delay of a transport customers may accept before they switch to alterna-
tive modes of transportation. The main concern in this study is how lateness of
customers or transport services has an impact on service provision and customer
acceptance of these new transport modes. Given these considerations regarding
performance, we distinguish passengers either arriving at a pickup location in
a timely manner, or them being late. We consider passenger populations with
a mix of these two behaviors and analyze how our planning approach can cope
with late arrivals. We modeled this scenario as a multi-objective variant of the
dial-a-ride-problem (DARP) [2,3], and developed a planning system based on
a large neighborhood search heuristic for creating transport schedules for mi-
crotransit systems. The problem formulation aims at finding routes for a fleet
of vehicles that satisfy transport requests of passengers. These requests are de-
fined by a) a pickup location where passengers may board a microtransit vehicle
and an associated pick-up time, and b) a destination location with an associ-
ated arrival time window. In our scenario, the destination location is a public
transport stop, therefore, the time tables of the public transport services fre-
quenting this stop may influence the chosen size of the arrival time window.
We use agent-based modeling [16] to develop a simulation of a rural commuter
scenario with a microtransit shuttle service. With this agent-based modeling and
simulation (ABMS) approach, lateness of passengers or road disturbances can
be simulated to verify whether a transport schedule can cope with these kinds of
problems. With such a microsimulation approach, we investigate how planning
results perform in terms of sensitivity to disturbances and in terms of stability
with respect to arriving in time for transfers between modalities at stops, or in
terms of transport capacities made available.

2 Related Work

Mobility solutions that are demand-responsive, such as ride-sharing or car pool-
ing, are promoted as new forms of transport in urban and wider metropolitan
areas to meet transport demand [7]. Riley et al. [12] present a real-time dis-
patching solution for a ride-sharing service with a rolling horizon that utilizes a
column-generation approach. A computational study shows that their approach
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scales very well in practice. However, their approach is tailored towards large-
scale systems used for highly populated urban areas such as New York City. In
contrast to our approach, where pickup and drop-off time windows are essential
for scheduling trips, the approach presented in [12] can neglect time windows due
to a large number of available vehicles and, typically, relatively short travel times
in the urban environment. In our study, a flexible microtransit service shuttles
passengers to a train or bus station where they may transfer to a timetabled
public service. Therefore, the choice of arrival time may be influenced by the
time tables of public transport services that passengers want to reach. How-
ever, this is taken into account in a pre-processing phase where a set of typical
transport requests are generated (synthetic population data), and not a concern
of the actual planning and optimization algorithm we developed (variants of
DARP, such as IDARP [11], in contrast, include a mix of flexible (bookable) and
fixed timetabled services in the model). We use agent-based modeling [16] and
microsimulation to investigate how a demand-responsive transportation service
can be delivered efficiently ([1] provide a review of agent-based transportation
systems). Microsimulation allows the modeling of individual behavior of agents
(passengers, vehicles, etc.) in a particular transport system. Ronald et al. [13]
discuss agent-based simulations for studying demand-responsive transportation
systems.

3 Rural Commuter Scenario

A rural commuter scenario forms the basis for the investigation presented in
this paper. This scenario is situated in an assumed rural area where a central
transport corridor, consisting of a major motorway and a rail line, connects
two urban centers. Public transport is concentrated in this corridor, whereas
outside in the wider rural region, no such services are available. In this scenario,
inhabitants of a rural area commute to a workplace in an urban center. They
either use a car, leading to congestion and pollution, or find a way to use the
rail line. There is usually no service for the first / last mile of daily commutes.

3.1 Transportation Network

In the modeling of this scenario, we assume that a demand responsive mobility
system is available for servicing the first / last mile travel of a rural popula-
tion. A microtransit service will serve fixed locations where passengers may be
picked up or transported to. We assume that there are stops specific to the
microtransit service, but that also existing public transport stops (e.g. railway
stations, bus stations) are frequented by such a service. This is necessary to al-
low a transition of passengers from a demand-responsive to a public transport
system. We, therefore, distinguish two types of stops: i) Public Transport (PT)
stops are provided by transit authorities; ii) Microtransit (MT) stops specific
to such a mobility service. Microtransit stops are used on-demand – they are
only frequented when passengers request transport from such a location. There
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are two main reasons that drive the creation of a network of such stops, a) it
is demand-oriented – because of a certain population density, or through the
initiative of local authorities, MT stops are established, or b) there are special
points of interest that warrant good accessibility. In the considered region, there
are 5 PT (train stations) and 97 MT stops. The road network of the rural region
under consideration is represented by a travel matrix with distances and travel
times (computed by OSRM [5] based on OpenStreetMap) between each pair of
PT and MT stops with the default OSRM car profile.

3.2 Vehicle Fleet

The vehicle fleet of the microtransit service is comprised of small buses with
limited seating. Vehicles are specified by the following parameters: a) number of
passenger seats, and b) availability, i.e., earliest start time, latest end time, depot
location. This microtransit fleet is deployed demand-responsive and, therefore, is
not subject to fixed service times. However, we assume that the complementary
public transport system is deploying services according to fixed timetables and,
therefore, the scheduling of public transport resources cannot be changed.

3.3 Transport Demand

Transport demand arises through passengers (alone or in groups) issuing trans-
port requests. A transport request is characterized through an OD-pair, describ-
ing a single journey from an origin to a destination location. In our current
study, a passenger may issue multiple transport requests in one booking. Such a
set of transport requests is then regarded as related and either all of them can
be scheduled for transport at the requested times and from / to the requested
locations, or all of them are rejected (no partial scheduling of a set of requests
is allowed). Several such requests may form a transport request chain, if the des-
tination of one request is the origin of the next and there is a timely correlation
between arrivals and departures. However, they can also be unrelated in terms
of timing and locations. In principle, transport requests are either pre-booked
well before a defined planning horizon, or they are placed on short notice (ad-
hoc transport requests). For now, we consider only a set of pre-booked requests.
In our study, a pre-processing step is generating a set of such request chains
(synthetic population) that represent the typical travel behavior of a particular
rural population as close as possible. Such a pre-processing step is necessary as
data about actual transport demand is not available. In the generation of such
a synthetic population, we assume that passengers book a chain of requests, de-
scribing situations where passengers are taken from an MT stop to the closest
PT stop (representing the commute from a rural microtransit stop to a selected
public transport stop), from where the public transport system will get them
to their work place (or any other destination), and the corresponding return re-
quest between these chosen stops. Passengers will start their journey at an MT
stop, and, with a scheduled return request, also end their journey at the same
MT stop.
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For generating the first (outgoing) OD-pair in such a transport request chain
(passengers commute to a train station), we assume that a) each origin stop in
a generated OD-pair is a randomly chosen MT stop in the pilot region, b) each
destination stop in a generated OD-pair is the PT stop closest to the MT stop
(shortest Euclidean distance). In order to use these scenarios in the planning and
simulation work, we limit what public transport is available to commuters. We
assume that passengers start their commute in a time period between 05:00 and
09:00 in the morning from Monday to Friday. Timetable information at public
transport stops is used in the calculation of the required arrival time windows for
the microtransit services at such a PT stop. The arrival time window is currently
set to 10 min and is correlated with timetabled departures of transport services at
the PT stop. The pick-up time of the microtransit service is calculated from this
arrival time window, using minimal duration of a transport request as well as its
maximum allowed duration (ride time limit) between the two selected stops. For
the generation of the corresponding return transport request, we assume that
the origin and destination of the first request are used in reverse. Commuters
returning from a train station to the original MT stop are assumed to do this in
a time period from 15:00 - 19:00 in the evening from Monday to Friday.

The approach for generating a synthetic population presented here is cur-
rently limited to commuter trips, as no reliable data about other types of trips
exist in the chosen rural area of study. Given that our work aims at showing the
use of agent-based simulation for shaping policies for mobility service provision
in general, we do not consider this focus on a particular type of trips a limi-
tation. Clearly, in the long run, for a successful service also trips for shopping
or recreational activities and trips leading to journeys local to the rural area
(coordinated with the timetabled services) have to be included in policy-shaping
procedures.

3.4 Constraints

The following constraints are considered in planning and execution of the trans-
port schedules: a) the number of used seats in a vehicle cannot be exceeded, and
b) the time windows and ride time limit defined by the passengers cannot be ex-
ceeded. Currently, multi-modality and, consequently, transfer times for changes
between different modes of transportation are not considered by the optimization
algorithm.

4 Approach

For the study of demand responsive transport systems, we use a combination
of combinatorial optimization and microsimulation. In a first step (Fig. 1), an
optimization algorithm takes a set of transport requests of customers and con-
structs a transport schedule for a fleet of vehicles. For each vehicle, a route is
defined as a timed sequence of stops with additional information about per-
formed transport requests. Currently, we only consider transport requests that
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Fig. 1. Evaluation of transport schedules.

are pre-booked in advance of the actual journey. In a second step, this trans-
port schedule is executed in a simulation environment and tested under various
conditions, introducing stochastic events such as late arrivals or disturbances.
Agent-based modeling [16] is used to create a simulation of the rural area where
passengers request transport at particular times and microtransit systems oper-
ate on a network of stops (pickup and delivery locations for passengers).

4.1 Optimization Algorithm

We generate feasible vehicle schedules by solving the considered DARP variant
with a greedy heuristic to construct initial solutions, followed by a large neigh-
borhood search (LNS) to improve them with respect to the following three ob-
jectives: i) maximizing the number of accepted requests, ii) minimizing the total
distance driven by all vehicles, and iii) minimizing the total excess ride time of
passengers exceeding their request’s direct travel time. These goals have been se-
lected to achieve both high customer satisfaction and carbon emission reduction
in service provision. The latter is based on the assumption of a linear relationship
between emissions and the total distance driven that is widely accepted in the
literature [4,10]. Since we are dealing with three potentially conflicting objective
functions, we need to adapt classical single-objective meta-heuristics to work
with multiple objectives. We decided to use a large neighborhood search (LNS)
similar to the one in [14], since it is considered to be one of the state-of-the-
art heuristics for a wide class of vehicle routing problems. Additionally, we use
some ideas from a bi-objective LNS in [8]. To preserve diversification through-
out the search, we maintain a pool of non-dominated vehicle schedules that is
continuously improved and updated. Initial schedules are constructed as follows:
i) we sort all transport requests by ascending latest arrival times, ii) iteratively
select the (initially empty) best schedule in our pool (based on the objective
ordering above), iii) extend it with the current request in all feasible ways, and
iv) add all obtained solutions to our pool. Deciding the feasibility of an inser-
tion is non-trivial for the DARP and done by using the method described in [2].
The obtained solutions are then iteratively improved via LNS by i) randomly
selecting one of the schedules in our pool, ii) removing random transport request
chains from it, iii) trying to insert to it as many not yet served request chains as
possible (by using greedy and regret insertion), and iv) feeding all intermediately
obtained schedules back to the pool. These steps are repeated for 100 iterations.
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4.2 Agent-based Modeling

Microsimulation is used for the evaluation of the transport schedule generated
by the optimization algorithm. In a process of agent-based modeling, we iden-
tify the stakeholders in the chosen rural transport scenario, such as passengers
and vehicle fleets of service providers. In the execution of a transport sched-
ule, concerns regarding delivery (passengers reach their connections in time) are
investigated through simulation.

The following agent types are considered: i) passengers who require transport
(and issue single transport requests or book whole transport chains), ii) vehicles
that conduct these transports (following the transport schedule), iii) stops (PT
and MT) that are agentified in this scenario, in order to model and control
arrival, pickup and delivery procedures of passengers and vehicles at PT and MT-
transit stops, respectively, and a iv) disturbance agent that is used to introduce
randomness into the execution of the transport schedules.

Passenger and Vehicle Agents Both passenger and vehicle agents execute
information derived from the transport schedule. Vehicle agents receive a sched-
ule comprised of a sequence of stops where passengers are either picked up or
delivered at particular times. Assuming a microtransit system using a fleet of
mini-buses, such a vehicle usually has a capacity of around eight seats. In addi-
tion, mini-buses require, in contrast to city buses with large seating and standing
capacities, a one-to-one seat assignment. Passenger agents receive information
about their chain of transport requests (scheduled according to the passenger’s
transport requests), they are required to arrive at a specified stop at a given
time (within a time window) so that they can board a mini-bus. Vehicle agents,
passenger agents and stop agents interact when arrival events occur at a particu-
lar stop. Vehicle agents perform the following actions: a) transfer between stops
(starting from a depot), such a transfer ends with an arrival event at a stop,
b) arrive / register at a stop, c) start waiting time at stop (wait for a period
of time or until arrival events of registered passenger agents occur), d) drop off
passenger agents according to transport schedule (seats become available, pas-
senger agent is un-registered from the vehicle agent), e) pickup of all registered
passenger agents (passenger agent is regarded as occupying a seat on the mini-
bus and is registered by the vehicle agent), f ) depart / un-register from stop
when all pickup requests fulfilled or waiting time expires. Passenger agents per-
form the following actions at the pickup location: a) depart from home; b) arrive
/ register at stop; c) start waiting time at stop (record waiting time); d) wait
for arrival event of vehicle that fulfills transport request (information received
from stop agent); e) board vehicle (register with vehicle, occupy seat); f ) un-
register from stop; g) start recording transfer time. Passenger agents perform
the following actions at the drop-off location: a) stop recording transfer time;
b) arrive / register at stop (stop agent acknowledges arrival). At this point in
the process, passenger agents either leave the stop (they un-register) to reach
their final destination on foot, or they start the next leg of their request chain,
where the current stop is the next pickup location.
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Stop Agents Stop agents act as arbitrators between passenger and vehicle
agents and keep track of the registration and waiting of both agents at a par-
ticular stop of the transport network. Agents that are not registered with stop
agents, are regarded “in transit”. A stop agent keeps track of the passengers
arriving, waiting, and departing at this stop.

4.3 Disturbance Events

A separate system agent, the so-called Disturbance Agent, generates disturbance
events. In the first instance, two events are considered: a) longer (or shorter)
travel times than expected, leading to delays or early arrival, and b) tardiness
of passenger or vehicle agents when leaving from a location. Arrival delays are
modeled implicitly. Each time a vehicle is in transit between two locations of the
transport network, the disturbance agent adds a random delay (or reduction)
to the travel times. Hence, a vehicle can arrive later (or earlier) than planned
at its next destination. We assume that the travel times recorded in the travel
matrix (representing the transport network) are not biased, i.e., they represent
the expected value of the underlying (unknown) distribution of the travel times,
where travel times for each vehicle and each trip are independent, which is a
reasonable assumption in case that travel times depend on the condition of the
vehicles, a driver’s skills, or minor roadside obstacles (slower vehicles impeding
the traffic, red lights) [15]. For now, extreme events such as traffic accidents,
blocked roads, or mechanical failures of the vehicles are not considered.

Influences on Passenger Agents We distinguish two types of passenger
agents: a) punctual, showing little to no tardiness, b) tardy, being late most
of the time. Assuming that a passenger has a scheduled pickup time α at a MT-
stop that is β walking minutes from his / her home address, the arrival of the
passenger is determined by two random processes. a) Departure from home /
work. follows a normal distribution X ∼ N (µ, σ2). Punctual (tardy) passengers
leave at µ = α− β− γ with a standard deviation of σ2 = 2 min, where γ defines
the “slack” of the passenger leaving earlier. Punctual passengers allow a slack
of γ = 5 min, while tardy passengers only allow γ = 3.5 min. b) Walking time to
the stop deviates from the expected walking time following a truncated normal
distribution X ∼ N (µ, σ2, a, b), where a, b ∈ R define upper/lower bounds. For
punctual customers we assume the parametrization µ = 0, σ2 =10 %, a =−5 %,
b =5 % and for tardy customers we assume µ = 0, σ2 =15 %, a =−5 %, b =5 %.
The actual arrival time at the pick-up location α̂ is determined by adding up
both random values. In Fig. 2 we show the empirical density of the punctuality
(α̂−α) of passengers at the pick-up locations. We notice that 0.65 % of the punc-
tual and 5.38 % of the tardy passengers arrive later than the scheduled pick-up
time α. Further, we assume that passengers wait up to 5 min after the scheduled
pick-up time for the vehicle to arrive before they abort the request.

Influences on Vehicle Agents Vehicle agents have the following behavior.
The vehicles leave from a location towards the next location according to their



10 Christian Truden , Mario Ruthmair , and Martin J. Kollingbaum

Fig. 2. Empirical density of punctuality for the two passenger types punctual and tardy ,
n =100 000 samples each. The punctuality is determined as the difference between the
scheduled pick-up time α and the actual arrival time at the pick-up location α̂ .

schedule once a) all passengers that are scheduled for pick-up have arrived, or,
b) the scheduled boarding time (plus a waiting time ω ≥ 0) of the passenger(s)
has passed and the passenger(s) have not arrived. However, their arrival times
are subject to random influence through the disturbance agent. Clearly, travel
times must always have positive values. In our experiments, we assume that they
follow a truncated Normal distribution. X ∼ N (µ, σ2, a, b, where a, b ∈ R define
upper/lower bounds. The bounds ensure that only “reasonable” values are sam-
pled. The expected values mu (for each edge of the travel matrix) are obtained
from the OSRM routing engine [5]. For now, we assume the following parame-
ters µ = 0, σ2 =15 %, a =−10 %, b =20 %. Obviously the parameterization must
be individually adjusted for other rural regions of study for which simulations
would be done.

5 Analysis

We study how disturbances, such as tardiness of passengers and delayed services,
affect the provision of a transport service with respect to transfers at stops and
timely delivery at destinations. In the analysis performed, the focus is on the
effect of passenger tardiness on service lateness at destinations and the number
of transport requests that are aborted (rather than determining appropriate fleet
sizes through simulation). Clearly, the punctuality of the passengers affects the
efficiency and stability of the service. In particular, services should not arrive
late at destinations. However, service providers may have a choice to wait for
tardy passengers in order to maximize the number of transport requests that are
serviced. Of interest is the sensitivity of a transport schedule for a microtran-
sit service to a population of tardy passengers and delays in service provision.
A proper management of a demand responsive mobility system, in particular
timely delivery at transfer stops to other modes of transport, is important to
ensure customer satisfaction and to establish trust in the reliability of the mi-
crotransit service. Demand-responsive services have a certain flexibility in terms
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of departure from stops as they are not bound to a fixed time table and may
leave as soon as all booked passengers have boarded. Time savings like these may
compensate for delays occurring further downstream of the remaining journey.
This allows service providers to operate according to a waiting policy at depar-
tures. The present analysis shows the effect of a waiting time policy on numbers
of transport requests serviced and what kind of lateness at destinations can be
expected.

5.1 Experimental Setup

For our analysis, we consider 10 randomly sampled instances that contain 100
transport request chains each that are served by a fleet of 10 vehicles (minibuses),
each with a capacity of 8 passenger seats. For each instance, we consider all those
transport schedules from the pool of solutions for which all 100 chains have been
accepted. Further, we perform 100 simulation runs for each transport schedule.

Passenger Agent Populations The punctuality of the passengers affects the
efficiency and stability of a transport service. To elaborate this point in more
detail, we run our simulations with different “populations” of passenger, i.e.,
different mixes of punctual and tardy passengers. We compare the simulation
results for the following three population types: a) 20 % punctual passengers
(and 80 % tardy passengers), b) 50 % punctual passengers, c) 80 % punctual
passengers. For each population, a total of around 1.34 million transport request
chains have been generated in our experiments.

Lateness at the Destination A late departure at pick-up locations, caused
by vehicles being late or waiting for tardy passengers may lead to late arrivals at
destinations. We measure this as the lateness `, which is the difference between
the actual (maybe late) arrival of the passenger at the destination and the end
of the arrival time window (of 10 min length). We report this late arrival time (in
minutes and seconds) at the destination for all requests (outgoing and return).
In that sense, ` = −10 min means arriving at the beginning of the arrival time
window, while ` = 5 min means arriving 5 min after the end of the time window
(being late).

Results - Vehicles with zero Waiting Time At first, we assume that vehicles
do not wait for the passengers beyond the scheduled pick-up time, i.e., waiting
time ω = 0 min. We summarize the aborted transport requests in Table 1 and
report the lateness (passengers arriving late at their destinations) in Table 2.
Additionally, we illustrate the lateness in Fig. 3. We notice that there are between
5.4 % and 10 % incomplete transport chains, depending on the population mix,
while the q95 quantiles for the lateness range from 1 min 27 s to 1 min 40 s. The
25 % quantile q95 is around −13 min meaning that these passengers arrive 3 min
prior to the arrival time window. Also, there is no excessive lateness with the
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q95 being at around 4 min. Overall, the rate of aborted requests seems to be
inversely proportional to the percentage of punctual passengers. Similarly, we
notice that the passenger population mix also influences the lateness. Although
we can clearly observe this effect in Fig. 3, it is limited as we can only report
lateness for completed transport requests. Depending on how much slack for
transferring to the next means of transportation at the destination was added
when defining the arrival time windows, these results seem very promising due
to the absence of excessive lateness or overly early arrivals. However, with the
percentage of aborted requests being rather high the reliability of the service
(even if this is induced by the tardiness of the passengers) is not guaranteed.
In an effort to reduce the number of aborted requests, the service provider may
introduce a waiting policy such that the drivers, who are represented by the
vehicle agents in the ABM, may wait for the passenger to arrive past the schedule
arrival time, i.e., ω > 0 min. If such a policy is put in place, it is pertinent to
provide additional date what a driver may allow in terms of lateness and still
will be able to compensate for the passenger’s lateness up to a certain amount
of time.

Table 1. Percentage of aborted transport request chains reported for the three popula-
tion types, ω = 0 min. We report the percentages of transport request chains aborted at
the outgoing or return transport request, and the completed transport chains. A chain
being aborted at the return transport request prerequisites that the corresponding
outgoing transport request was successful.

punctual aborted outgoing aborted return both completed
(%) (%) (%) (%)

80 3.56 1.82 94.6
50 4.74 3.06 92.2
20 5.83 4.22 90.0

Table 2. Lateness ` reported for the three population types, ω = 0 min. The percentage
of (completed) transport requests with ` > 0 is reported, and the 25 %, 50 %, 75 %,
95 %, 99 % quantiles are reported as well. Given are combined numbers for all completed
outgoing and return transport requests (if completed).

punctual ` > 0 q25 q50 q75 q95 q99
(%) (%) (mm.ss) (mm.ss) (mm.ss) (mm.ss) (mm.ss)

80 10.804 66 -13.53 -7.58 -2.45 1.27 4.07
50 12.118 65 -13.20 -7.31 -2.15 1.34 4.10
20 13.265 74 -12.52 -7.10 -1.51 1.40 4.14



Analysis of Schedules for Rural First and Last Mile Microtransit Services 13

−30

−20

−10

−5

0

5

10
l  

(m
in

ut
es

)

0e+00

3e−04

6e−04

9e−04

−30 −20 −10 −5 0 5 10
l  (minutes)

Population

80% punctual

50% punctual

20% punctual

Fig. 3. Illustration of the lateness ` for the three population types (for the completed
transport requests). The green (red) line marks the beginning (end) of the arrival time
windows of the requests. All time windows are of 10min length.

Results - Vehicles with Waiting Times up to 10min We repeat our experi-
ments with waiting times ω = {1 min, 2 min . . . , 10 min}. The data show that the
quantile values for ` increase for growing ω. However, this effect is rather modest
as the values grow no more than a minute when ω is increased from 0min to
10min. In Fig. 4, we illustrate the percentages of aborted requests for changing
ω. However, we notice a minimum for the return requests at ω = 2 min, that is
followed by an increase for ω > 2 min. The outgoing requests show a similar be-
havior but the increase for ω > 3 min is less strong. In that sense, the tardiness
of passengers at pickup influences arrival times at destinations, depending on
the chosen waiting time ω. All later arrivals lead to aborted requests (chains).
Overall, we observe a consistent effect of the passenger population mix in terms
of punctuality across all experiments, i.e., lateness at passenger destinations and
percentage of aborted requests is always negatively affected by a lack of punctu-
ality of the passengers. Passengers being tardy at their pickup location usually
lead to aborted transport requests, which can be counteracted by introducing a
vehicle waiting policy that increases the number of serviced requests. In sum-
mary, we see that introducing a waiting policy is beneficial to avoid aborted
transport requests, while the effect on the lateness ` is rather small and there-
fore acceptable. The above results suggest that our approach can be a valuable
decision-support tool for mobility providers that want to fine-tune their vehicle
waiting policy in order to maximize the number of serviced transport requests.
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Fig. 4. Percentages of aborted transport request chains compared for different vehicle
wait times ω = 0, 1, . . . , 10 min. We distinguish if a transport request chain is aborted
at the outgoing or the return request.

6 Conclusion

We modeled a rural commuter scenario as a set of agents, where transport re-
sources, passengers and elements of the transportation network (stops) are mod-
eled as agents. At this stage of the project, generated requests represent pas-
senger travel between dedicated stops of different mobility systems (on-demand
transit, public transport). In a process of generating representative sets of pas-
senger transport requests, these transport system stops are selected according
to criteria such as whether they are the most plausible entry / exit points into
a transport system that are closest to a person’s start or to their vicinity to a
person’s intended destination, or their reachability from rural population cen-
ters, or whether they are public transport stops that allow a transfer from a
microtransit system to a public transport system. We analyzed how late arrival
of passengers and / or transport impacts on service quality (reaching transfer
stops or final destinations in time). Our study shows that introducing a vehicle
waiting policy is beneficial for service provision, resulting in less aborted trips.
In future research, agent-based modeling and simulation (ABMS) will be used
to investigate additional aspects, such as bottlenecks in service provision, how
to optimize traffic and passenger flows, or how changes in procedures impact on
the performance of an overall mobility system.
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